

A BEAM SEARCH ALGORITHM FOR MINIMIZING RESHUFFLE
OPERATIONS AT CONTAINER YARDS

Kun-Chih Wu1* and Ching-Jung Ting2

1 Department of Industrial Engineering and Management

Yuan Ze University
135 Yuan-Tung Road

Chung-Li, Taiwan, R.O.C.
e-mail: s968907@mail.yzu.edu.tw

2 Department of Industrial Engineering and Management

Yuan Ze University
135 Yuan-Tung Road

Chung-Li, Taiwan, R.O.C.
e-mail: ietingcj@saturn.yzu.edu.tw

Abstract: The container relocation at container yards will influence the yard operator efficiency. The problem we
tackled is to retrieval all containers from an initial configuration of given number of bays and tiers with minimum
number of relocations. There is no new arriving container and only the containers in the same stack above the retrieved
container can be relocated. We propose a beam search (BS) algorithm that is similar to the breadth-first branch-and-
bound scheme, but only few permitted nodes in each level are kept for the further search. In order to select permitted
nodes in each level, a look-ahead heuristic is applied for evaluation. We randomly generate 1920 instances with
different configurations to test our BS algorithm. The results show that our BS algorithm can obtain optimal solutions in
small size instances and near optimal solutions in larger size instances within effective computation time.

1. INTRODUCTION

With the increasing globalization, the demand of container transportation grows steadily. Terminals have to improve
their performance efficiency to compete with others. Many issues are involved in affecting the terminal performance,
such as labor utilization, traffic congestion in terminal, transfer time of yard cranes, etc. (Murty et al., 2005). Container
relocation is a critical issue with respect to the terminal performance, which affects the turn-around time of trucks and
of vessels and further impacts the performance of a terminal (Kim and Kim, 1999). The relocation of a container is
performed when this container is above another container that is the target to be retrieved immediately. Since relocation
is not a value-added but time consuming activity, it should be reduced as many as possible.

Containers are piled up at the container yard in such a manner to increase the space utilization. Block stacking is
the most common way for container stowage at container yard (Kim and Hong, 2006), as shown in Figure 1. The
numbered block indicates the retrieval order of each container, i.e. the smaller number indicates the higher priority.
Though, the block stacking also indicates that only the top container is accessible. On the other hand, for export
containers, loading sequence of containers is usually determined before loading to vessel (Lee and Chao, 2009).
According to loading sequence, each export container has its own priority to be retrieved. It also implies the relocation
occurs when a container with higher priority is underneath another container with lower priority.

Stowage planning is considered to decide the most suitable locations of containers at container yard (Avriel et al,
1998). It can be decomposed to two types, the static problem and the dynamic problem, in terms of the arrival/departure
manner of containers. In the static problem, the sequence of containers is known in advance, while in the dynamic
problem, the containers arrived or departed in a random manner.

For the dynamic problem, stochastic concept is usually adapted to estimate the expected number of relocations.
Kim and Kim (1999) dealt with a dynamic relocation problem and presented a formula to interpret the relation between
the stack height and the expected number of relocations. Kim et al. (2000) considered minimizing expected numbers of
relocation at the export container yard. They proposed a dynamic programming model to provide an optimal decision of
stack for minimizing expected number of relocations and a decision tree to make a fast decision.

In the real time cases, the exact location for relocating container has to be determined immediately. Therefore,
Avriel et al. (1998) considered the problem is to minimize the total cost of reshuffles when containers on a vessel have
to be loaded and unloaded from/to several ports. The authors proposed a binary programming model as well as a
heuristic procedure..

Figure 1. The Illustration of Containers Stacking at the Container Yard

Murty et al. (2005) provided a Decision-Support System (DSS) for Hong Kong International Terminals (HIT).

The system achieved elastic capacity successfully, almost 50 percent improvement in capacity was obtained. They
divided the real world problem into five related subproblems. Reshuffle problem is also an important issue considered
in their study, in which a rule called the reshuffle index (RI) was performed to relocate containers. Yang and Kim
(2006) addressed a general concept of relocation problem. They proposed both dynamic programming and genetic
approach for a static grouped location problem, as well as three rules for the dynamic case.

Kim and Hong (2006) considered a container retrieval problem at the container yard. The objective is to minimize
relocations when all containers at a yard-bay are retrieved according to a predetermined precedence. They proposed a
branch-and-bound algorithm and a heuristic with respect to reducing the expected number of relocations during retrieval
process. The empirical results showed that the error rate between the branch-and-bound and the heuristic is 7.3% in the
first case and 4.7% in the later case.Caserta et al (2009) continued the study of Kim and Hong (2006). They also
handled the container retrieval problem but applied an inspired metaheuristic, called corridor method (CM). The results
indicated that CM can reach optimal solution in the small size problem within very short computational time. In this
study, we also consider the same problem proposed by Kim and Hong (2006), but we use beam search algorithm to
solve this problem.

The remainder of the paper is organized as follows. In section 2, the container reshuffle problem is defined and
related heuristics are introduced. The beam search and the branch-and-bound algorithms are introduced in section 3.
Section 4 presents the experiment results with large number of instances. Section 5 summarizes the findings in this
research.

2. CONTAINER RESHUFFLE PROBLEM

Container relocation problem considered in this paper is to retrieve all containers at a yard-bay. We assume that each
container with different retrieval priority and the initial configuration of the yard-bay are known in advance. In addition,
we only consider a static problem that means the new arrival container is not allowed. The objective is to retrieve all
containers at the yard-bay with minimum number of relocations. The optimal retrieval procedure is performed by
determining a stack to relocate a container. Formally, this problem includes following five assumptions:
1) The maximum number of stacks and maximum number of tiers at a container bay are given, and the container only

can be relocated within the yard-bay.
2) Every container at the yard-bay has the same size.
3) The initial configuration of the container bay and the retrieved sequence of each container are known in advance.
4) The new arrival container is not allowed during the retrievals.
5) The reshuffle operations only occur while a target container needs to be retrieved. It implies that pre-marshalling is

not allowed in this problem.
We use the following notations to describe the problem:
H : The maximum number of tiers for every stack.
N : The number of containers in the initial configuration.
R(i, j) : The container at the top of ith stack is relocated to jth stack, where i, j  {1, 2, …, W}
Si : The set represents the configuration of the ith stack, where i  {1, 2, …, W}. The elements in the set

indicate the retrieval order of each container, and the last element is on the top of stack.
W : The maximum number of stacks.
Y : The set of stacks within the yard bay, where Y = {S1, S2, …, SW}
An example illustrated in Figure 2 has an initial configuration Y = {S1, S2, S3} = {{2, 3}, {1, 5, 4}, {6}}. The

container retrieving is named target container henceforth, and the container that blocks the target container retrieving is
named obstructive container. At the first stage, the target container is container 1. The container 1 cannot be retrieved,

Container Yard

Container Bay

2

3

1

5

4

6

stack 1

tier 3

tier 2

tier 1

stack 2 stack 3

because containers 4 and 5 are above it. The relocation is therefore necessary to free the target container. In the first
stage, the relocation of container 4 from stack 2 to stack 1 is denoted as R(2, 1). Similar procedure is applied for
remainder containers until all containers are retrieved, and the total number of reshuffles in this example is four. The
solution can be expressed as all reshuffle operations involved during the retrieval procedure. The solution with four
reshuffles can be simply expressed as {R(2, 1), R(2, 3), R(1, 3), R(1, 2)}.

Figure 2: An Example of the Procedure for Retrieving and Reshuffling Containers (H = 3, W = 3)

2.2 Heuristic

There are three heuristics involved in this paper for solving container relocation problem. The first rule, called the
lowest position (TLP), was proposed by Zhang (2000). TLP tends to force every stack with a close number of
containers, so that average relocation can be reduced. This rule selects a stack that has the fewest containers. Break ties
arbitrarily, if two stacks have the same lowest position. For example, in Figure 3 (a), the container 4 has to be relocated
to other stacks. The stack 3 has lower position than stack 1, the container 4 then will be relocated to stack 3.

The second rule, called reshuffle index (RI) which computes the number of containers with higher priority than the
obstructive container is located, was proposed by Murty et al. (2005). Since containers with higher priority underneath
the relocated container lead to additional reshuffles. This rule chooses a stack that has lower RI to relocate container. If
there are several stacks with the same RI, then break ties arbitrarily. An illustration shown as Figure 3 (b), the container
5 needs to be relocated. The stack 3 has one container with higher priority than container 5, so that stack 3 has lowest RI
equal to one. The container 5 should be relocated to stack 3.

The last one is reshuffle index with look-ahead (RIL) that is an extension of reshuffle index rule. The difference
between RI and RIL is the rule for breaking ties. In the RIL, the stack for relocating stack is first determined according
to RI, and the RIL breaks ties by look-ahead mechanism. The look-ahead rule selects a stack, in which the highest
priority of the containers is the lowest. The concept of the look-ahead rule is to avoid additional relocations in near
future steps. If a relocated container is above a container that will be retrieved just after the target container, then an
extra relocation will occurs in retrieving next container. In Figure 3 (c), the container 4 has to be retrieved, and stack 1
and stack 3 both have equal RI. If container 4 is relocated to stack 1, then one more relocation would be needed when
retrieving container 2. According to RIL rule, stack 3 is chosen because the priority of container 3 is lower than the
priority of container 2.

(a) the TLP rule (b) the RI rule (c) the RIL rule

Figure 3. The Heuristic Rules for Relocating a Container

3. BEAM SEARCH

Beam Search (BS) is a heuristic based on breadth-first branch-and-bound algorithm. It was earliest applied in artificial
intelligent to deal with the speech recognition (Lowerre, 1976). It has been then employed on the scheduling problem,
like the studies conducted by Fox (1983) and Ow and Smith (1988). Ow and Morton (1988) later proposed a novel
mechanism for the beam search, called Filter Beam Search, which gives a compromise between computational time and
solution quality. They suggested that a rough evaluation resembles a filter is applied first to prune out the nodes, and

2

5

1

4 3

6

Reshuffle

RI = 1 RI = 1

2

3

1

5 4

6

Reshuffle

RI = 2 RI = 1

2

3

1

5

4

6

Reshuffle

TLP = 2 TLP = 1

2

3

1

5

4

6 2

3

4

1 6

5

1st reshuffle

2

3

1

5

4

6

2nd reshuffle
Stage 1

1st retrieval

2 3

4

6

5

2

3

4

6

5

4rd reshuffle
2nd retrieval

Stage 2 Stage 3 Stage 5 Stage 6

2

3

4

6

5

3rd reshuffle
Stage 4

only α nodes are retained. These α nodes are evaluated again by a caution estimated heuristic and only ß nodes are
chosen. Sabuncuoglu and Bayiz (1999) applied filter beam search for scheduling problem with makespan and tardiness
criteria. A tiny revision for their beam search is that nodes in the first level are evaluated without filter, and a filter is
applied in remainder levels.

3.1 Standard Beam Search

BS follows breath-first search strategy in its searching scheme, in which the nodes are searched level by level. Unlike
the general tree search scheme that generates every possible node to seek optimal solution, BS only keeps some
promised nodes at each level for sprouting the descendants. In the beam search, only ß promised nodes at each level are
required for the further search. The ß is so-called the beam width. The BS reduces a great deal of searching space via
limiting the nodes retained at each level. Suppose n is the depth of a tree, the searching space of the BS includes ßn
solutions against n! solutions contained in the original solution space. However, the optimality can not be confirmed by
the beam search, since the optimal solution may be ignored during searching process. The beam search is hence a
constructive heuristic.

The promised nodes can be determined simply by estimated rules or heuristics. The nodes with better estimated
values have more possibility to gain better results. The concept of beam search is to keep the nodes with higher
probability achieving optimal solution during the searching process. The search manner is different from the branch-
and-bound that keeps the nodes via a strict restriction, but the beam search realize the concept in an opportunistic
manner.

3.2 Beam Search for Container Reshuffle Problem

The decision involved in the container reshuffle problem is to decide which stack to relocate a container. The best
sequence of stacks for relocations results in the minimum total number of reshuffles. A node in our beam search
represents a partial solution that includes the stacks for relocations from root to current node.

Generally, BS chooses the best ß nodes at each level as beam nodes. As illustration in Figure 4, there are four
nodes in the level three generated by pervious beam nodes (N3 and N4), and two of them generated from the same node
(N3) are chosen as next beam nodes. The search manner concentrates on the partial beams that have better performance.
It can increase the possibility to gain better solution via exploiting the partial beams, however it also increases the
possibility to fall into the local optimal solution.

In this study, we apply a standard beam search to solve container relocation problem, in which the filter
mechanism is not considered. The search begins from an initial configuration, and then the nodes at first level are
sprouted out. Every node is evaluated by a given global heuristic to estimate its upper bound. The global heuristic can
use one of those three mentioned in section 2.2 to estimate an upper-bound. Only ß nodes with lower upper-bound will
be selected as beam nodes. The selected beam nodes then sprout out their descendants for the next level. Repeating the
procedure until a feasible solution is obtained. An illustration shown as Figure 4, the ß of the beam search is set as two.
The evaluation function is performed to estimate the upper bound and the search scheme selects the best two
descendants to be beam nodes. Only the beam nodes have to generate the descendants at each level, remaining nodes
are ignored. The process is terminated at level four, in which a complete solution is obtained. The minimum relocation
is four according to the beam nodes at last level.

Let N0 indicates the root, B is the set of beam nodes, C is the nodes pool of all descendants that generated in the
same level. The procedure of beam search is presented as follows:

Beam Search Procedure
Step 1: [initialization]

Set B = {N0}
Step 2: [retrieval procedure]

Step 2.1: For each node N  B
Do

If target container T is on the top of a stack in the bay Y of the node N
Retrieve the T from Y

Until there is a container blocked the target container.
Step 2.2: If a configuration Y in a node N  B is empty, then go to Step 5.

Step 3: [branch procedure]
Step 3.1: Set the descendants pool C = {Ø}
For each node N  B

Let St is the stack with target container T in node N, and D = N
Step 3.2: For each stack S in node D

If stack S is not full and S ≠ St
Perform the relocation R(St, S)

Step 3.3: C = C∪D.
Step 4: [relocation procedure]

Step 4.1: For each node D  C
Perform a Heuristic to evaluate node D.

Step 4.2: Select best Min{ß, |C|} nodes from C to replace beam nodes in B. Go to Step 2.
Step 5: [termination]

Return Min{number of relocations for node N, N  B}. Stop the procedure.

Figure 4. Representation of beam search for container reshuffle problem

3.3 Branch and Bound

We developed a brand-and-bound procedure in this paper as well. The depth-first procedure is applied to reduce
memory usage. The node that is sprouted out first will be visited first. Once a feasible solution that has retrieved every
container at the yard-bay is found, the procedure will then backtrack to its parent to search another branch. Because the
level indicates the number of relocations, if a feasible solution is found at level k, then the further search over level k-1
is not necessary. All generated nodes will be visited to confirm the optimal solution is achieved.

4. EXPERIMENTAL RESULTS

Both the beam search and the branch-and-bound were tested to compare the performance of each other. The three
heuristics introduced in section 2.2 were tested as well. All algorithms were coded in Borland C++ Builder 6.0, and run
on a PC with AMD Athlon Dual Core +3800 2.0 GHz and 2 GB memory. The testing data are generated randomly for
experiments.

4.1 Testing Data

For comparing the performance of algorithms, different sizes of problem were generated. Kim and Hong (2006)
mentioned that a yard bay usually contained 4-7 tiers with 6-10 stacks. Hence, without loss of generality, we created
problems between 3-8 tiers and 3-10 stacks. We generated 48 problem classes, and each of them has 40 instances, so
there are total 1920 instances generated. In each instances, we randomly located containers with different priorities into
a yard-bay. In addition, the number of containers (N) is determined by W and H. Given W and H, the total number of
slots at the yard-bay is W×H, and the most number of relocations to retrieve one container is H – 1. For confirming the
feasibility, Eq. (1) ensures that enough space is reserved for relocations of containers.

N = W×H – (H – 1) (1)

Level 2

Level 1

Level 3

Level 0

Level 4

1 3

3 1 3

2 23 3

 Node generated by beam node

Beam node

4
3 5
2 1

6

3 5
2 1

4
6

 4
3 5
2 1

6

Initial

4
3
2 1

5
6

3
2 4

5
6

2 3

 3
2 4

5
6

5
3
2 1

4
6

 3
2 5

4
6

N1 N2

N3 N4 N5

N8 N9 N6 N7

N10 N11

N0

3
2

4
5
6

2

N12

4.2 Computational Results

We first tested the heuristics with three various rules on each class, and the results are shown as Table 1. The first
column and sixth column indicate the number of stack (W) with range from 3 to 10. The second column and seventh
column indicate the number of tiers (H) with range from 3 to 8. The column 3-5 and column 8-10 represent the results
of three heuristics. Each cell shows the average number of reshuffles over 40 instances. The results demonstrated that
the RIL outperforms both TLP and RI at every class. Because the computational times of the heuristics are quite fast
(less than 0.01 seconds), they are not included in the table.

The beam searches with different beam width as well as branch-and-bound algorithm were tested. Ideally, a more
accurate estimation leads to a better result of beam search. Therefore, the RIL is embedded in our beam search for
global evaluation, due to the better estimation of relocations.The detail results of beam search in each class were shown
in Table 3. As the beam width increases, the elapsed time increases linearly, but the improving rate on the average
number of reshuffles decreases. The average number of relocations will finally converge to a certain value. An
exhaustive search may take too much time but gain little improvement. Hence, the beam search provides a compromise
between time and solution quality.

5. CONCLUSION

In this paper, we deal with a container reshuffle problem, in which each container has a particular priority to retrieve.
We first proposed a modified heuristic RIL and compared the heuristic with the other two existing heuristics (RI and
TLP). Then, we proposed a beam search heuristic to solve the problem, in which the RIL is embedded to provide a
global evaluation. We randomly generate 48 problem classes and 40 instances in each class, and there were total 1920
instances generated. The experiments were performed by running those algorithms on generated instances.

The computational results show that the proposed modified heuristic outperforms the other two existing heuristics
at every problem class. A branch-and-bound also provided to compare with the beam search. The result shows that the
beam search can reach most optimal solution when beam width (ß) equal to 15, and all optimal solution can be obtained
as beam width equal to 70.

6. REFERENCES

Avriel, M., Penn, M., Shipirer, N. and Witteboon, S. (1998) Stowage Planning for Container Ships to Reduce the
Number of Shifts. Annals of Operations Research, 76: 55-71.

Caserta, M. and Voß, S. (2009) A Corridor Method-based Algorithm for the Pre-marshalling Problem. Lecture Notes in
Computer Science, 5484: 788-797.

Caserta, M., Schwarze, S. and Voß, S. (2009) A New Binary Description of the Blocks Relocation Problem and
Benefits in a Look Ahead Heuristic. Lecture Notes in Computer Science, 5482: 37-48.

Fox, M. S. (1983) Constraint-Directed Search: A Case Study of Job-Shop Scheduling, PhD Dissertation, Computer
Science Department, Carnegie-Mellon University.

Kim, K. H. and Hong, G. P. (2006) A Heuristic Rule for Relocating Blocks. Computers & Operations Research, 33:
940-954.

Kim, K. H. and Kim, H. B. (1999) Segregating Space Allocation Models for Container Inventories in Port Container
Terminals. International Journal of Production Economics, 59: 415-423.

Kim, K.H. and Kim, H.B. (2002) The Optimal Sizing of the Storage Space and Handling Facilities for Import
Containers. Transportation Research Part B, 36: 821-835

Kim, K. H., Park, Y. M. and Ryu, K. R. (2000) Deriving Decision Rules Locate Export Containers in Container Yards.
European Journal of Operational Research, 124: 89-101

Lowerre, B.T. (1976) The HARPY Speech Recognition System. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh,
PA.

Lee, Y. and Chao, S-L. (2009) A Neighborhood Search Heuristic for Pre-marshalling Export Containers. European
Journal of Operational Research, 196: 468-475.

Murty, K.G., Liu J., Tseng, M. M., Leung, E., Lai, K-K. and Chiu, W.C. (2005) Hong Kong International Terminals
Gains Elastic Capacity Using a Data-intensive Decision Support System. Interfaces, 35: 61-75.

Ow, P. S. and Morton, T. E. (1988) Filtered Beam Search in Scheduling. International Journal of Production Research
26: 35-62

Ow, P. S. and Morton, T. E. (1989) The Single Machine Early/Tardy Problem. Management Science, 35: 177-191.
Ow, P. S. and Smith, S. F. (1988) Viewing Scheduling as an Opportunistic Problem-solving Process. Annals of

Operations Research, 12: 85-108.

Sabuncuoglu, I. and Bayiz, M. (1999) Job Shop Scheduling with Beam Search. European Journal of Operational
Research, 118: 390-412.

Sabuncuoglu, I., Gocgun, Y. and Erel, E. (2008) Backtracking and exchange of information - Methods to enhance a
beam search algorithm for assembly line scheduling. European Journal of Operational Research, 186: 915-930.

Valente, J. M. S. and Alves, R. A. F. S. (2005) Filtered and Recovering Beam Search Algorithms for the Early/Tardy
Scheduling Problem with No Idle Time. Computers & Industrial Engineering, 48: 363–375.

Yang, J.H. and Kim, K. H. (2006) A Grouped Storage Method for Minimizing Relocations in Block Stacking Systems.
Journal of Intelligent Manufacturing, 17: 453-463.

Zhang, C. (2000) Resource Planning in Container Storage Yard, PhD Dissertation, Department of Industrial
Engineering, The Hong Kong University of Science and Technology.

Table 1. Average Numbers of Reshuffles of Evaluation Heuristics in Each Class

class
TLP RI RIL

class
TLP RI RIL

W H W H
3 3 3.58 3.42 3.4 7 3 11.50 10.10 9.88
3 4 6.67 6.10 5.95 7 4 19.40 20.10 18.80
3 5 10.60 9.80 9.45 7 5 33.00 30.90 28.30
3 6 15.40 13.60 13.20 7 6 45.80 45.00 41.30
3 7 20.20 18.10 17.30 7 7 66.10 59.80 54.50
3 8 27.20 24.10 22.90 7 8 82.60 76.60 68.70
4 3 5.67 5.03 4.92 8 3 11.60 11.90 11.70
4 4 10.50 9.05 8.80 8 4 22.90 20.90 20.00
4 5 16.30 14.50 13.70 8 5 37.60 34.70 32.10
4 6 23.20 19.10 17.90 8 6 55.00 50.60 46.50
4 7 33.40 28.90 27.60 8 7 79.20 68.40 61.60
4 8 44.80 37.90 34.60 8 8 93.90 88.90 79.50
5 3 6.95 5.90 5.75 9 3 14.10 12.40 12.10
5 4 14.40 12.20 11.80 9 4 24.80 24.70 23.60
5 5 21.00 18.10 17.40 9 5 44.50 37.50 35.10
5 6 31.80 25.60 24.10 9 6 61.50 55.70 50.20
5 7 46.00 36.30 33.70 9 7 88.50 76.70 68.80
5 8 61.60 49.80 44.50 9 8 109.00 97.90 87.40
6 3 8.95 7.92 7.80 10 3 14.90 14.60 14.40
6 4 16.00 13.20 12.80 10 4 28.90 26.20 24.70
6 5 26.90 22.60 21.40 10 5 47.90 41.20 38.50
6 6 41.20 32.60 30.10 10 6 67.00 60.20 54.40
6 7 56.90 45.50 41.70 10 7 101.00 85.10 75.80
6 8 75.00 57.20 53.90 10 8 121.00 111.00 96.70
 avg 39.708 34.950 32.069

Table 2. Average Numbers of Reshuffles of Beam Search with Varied Beam Width and the Branch-and-Bound

class
Beam Search B&B

BW=5 BW =10 BW =15 BW =20 BW =50 BW =70 Opt.
W H Res Time Res Time Res Time Res Time Res Time Res Time Res Time
3 3 3.38 0.000 3.38 0.000 3.38 0.000 3.38 0.000 3.38 0.000 3.38 0.000 3.38 0.000
3 4 5.67 0.000 5.67 0.000 5.67 0.000 5.67 0.000 5.67 0.000 5.67 0.000 5.67 0.000
3 5 8.40 0.000 8.40 0.000 8.40 0.000 8.40 0.001 8.40 0.001 8.40 0.001 8.40 0.001
3 6 11.50 0.001 11.50 0.001 11.50 0.001 11.50 0.002 11.50 0.003 11.50 0.004 11.50 0.009
3 7 15.10 0.001 15.10 0.001 15.00 0.002 15.10 0.003 15.00 0.006 15.00 0.008 15.00 0.060
3 8 19.00 0.002 18.90 0.003 18.80 0.004 18.80 0.005 18.70 0.010 18.60 0.014 18.60 1.510
4 3 4.85 0.000 4.85 0.000 4.85 0.000 4.85 0.000 4.85 0.000 4.85 0.000 4.85 0.000
4 4 8.43 0.000 8.43 0.001 8.43 0.001 8.43 0.001 8.43 0.002 8.43 0.003 8.43 0.007
4 5 12.30 0.001 12.20 0.002 12.20 0.002 12.20 0.003 12.20 0.006 12.20 0.007 12.20 0.241
4 6 15.80 0.002 15.70 0.003 15.70 0.004 15.70 0.005 15.60 0.012 15.60 0.016 15.60 11.000
4 7 23.00 0.003 22.90 0.006 22.80 0.008 22.70 0.010 22.60 0.023 22.60 0.031 – –
4 8 28.90 0.005 28.40 0.009 28.20 0.013 28.10 0.017 28.00 0.038 27.90 0.052 – –
5 3 5.75 0.000 5.75 0.000 5.75 0.001 5.75 0.000 5.75 0.002 5.75 0.002 5.75 0.002
5 4 11.00 0.001 11.00 0.002 11.00 0.002 11.00 0.002 11.00 0.006 11.00 0.008 11.00 0.308
5 5 15.70 0.002 15.70 0.004 15.60 0.005 15.60 0.007 15.60 0.014 15.60 0.019 15.60 40.900
5 6 21.30 0.004 21.30 0.007 21.20 0.009 21.20 0.013 21.10 0.030 21.10 0.040 – –
5 7 28.30 0.006 28.10 0.012 28.10 0.017 27.90 0.022 27.80 0.052 27.80 0.070 – –
5 8 37.50 0.011 37.00 0.020 36.90 0.029 36.90 0.038 36.50 0.089 36.40 0.121 – –
6 3 7.65 0.000 7.65 0.002 7.65 0.002 7.65 0.002 7.65 0.004 7.65 0.005 7.65 0.034
6 4 12.10 0.002 12.00 0.003 12.00 0.004 12.00 0.005 12.00 0.012 12.00 0.016 12.00 11.200
6 5 19.40 0.004 19.40 0.007 19.40 0.011 19.40 0.013 19.40 0.030 19.30 0.041 – –
6 6 26.50 0.007 26.30 0.013 26.30 0.019 26.30 0.025 26.10 0.057 26.10 0.079 – –
6 7 35.80 0.012 35.60 0.023 35.30 0.034 35.20 0.045 35.00 0.107 34.90 0.148 – –
6 8 44.30 0.018 44.20 0.036 43.80 0.052 43.50 0.068 43.20 0.162 43.20 0.226 – –
7 3 8.95 0.001 8.95 0.002 8.95 0.003 8.95 0.004 8.95 0.007 8.95 0.011 8.95 0.834
7 4 15.50 0.003 15.50 0.005 15.50 0.008 15.50 0.010 15.50 0.023 15.50 0.031 – –
7 5 21.60 0.005 21.50 0.011 21.40 0.016 21.40 0.020 21.40 0.049 21.40 0.066 – –
7 6 31.60 0.011 31.30 0.022 31.30 0.032 31.20 0.042 31.00 0.099 31.00 0.136 – –
7 7 40.50 0.019 40.20 0.036 40.00 0.053 39.80 0.069 39.50 0.165 39.40 0.229 – –
7 8 51.70 0.031 51.00 0.060 50.80 0.089 50.50 0.116 50.00 0.277 49.90 0.383 – –
8 3 9.72 0.002 9.72 0.003 9.72 0.004 9.72 0.005 9.72 0.011 9.72 0.015 9.72 6.510
8 4 17.90 0.004 17.90 0.008 17.90 0.012 17.90 0.016 18.00 0.035 18.00 0.048 – –
8 5 25.60 0.009 25.50 0.017 25.50 0.025 25.40 0.033 25.40 0.079 25.40 0.107 – –
8 6 36.80 0.017 36.40 0.033 36.20 0.048 36.20 0.064 36.00 0.153 36.00 0.209 – –
8 7 46.20 0.028 45.60 0.054 45.60 0.080 45.60 0.105 45.20 0.251 45.10 0.345 – –
8 8 59.30 0.048 58.50 0.091 58.50 0.136 58.00 0.179 57.50 0.427 57.30 0.593 – –
9 3 11.40 0.002 11.40 0.004 11.40 0.007 11.40 0.009 11.40 0.018 11.40 0.025 11.40 147.000
9 4 19.20 0.006 19.20 0.013 19.10 0.018 19.10 0.024 19.10 0.055 19.10 0.075 – –
9 5 28.90 0.013 28.90 0.025 28.80 0.038 28.80 0.050 28.70 0.118 28.70 0.161 – –
9 6 40.80 0.025 40.60 0.048 40.50 0.072 40.30 0.095 40.00 0.227 40.00 0.316 – –
9 7 52.80 0.043 52.40 0.084 52.20 0.124 52.00 0.162 51.70 0.396 51.50 0.547 – –
9 8 68.10 0.073 67.20 0.139 67.20 0.209 66.90 0.277 66.40 0.665 66.00 0.910 – –
10 3 11.90 0.003 11.90 0.006 11.90 0.009 11.90 0.011 11.90 0.024 11.90 0.033 – –
10 4 22.50 0.009 22.40 0.017 22.40 0.025 22.40 0.034 22.40 0.079 22.40 0.108 – –
10 5 32.10 0.019 31.90 0.036 31.90 0.054 31.90 0.072 31.80 0.170 31.80 0.235 – –
10 6 44.70 0.035 44.40 0.069 44.20 0.101 44.10 0.134 43.90 0.321 44.00 0.451 – –
10 7 59.20 0.065 58.60 0.127 58.40 0.184 58.00 0.243 57.70 0.588 57.50 0.817 – –
10 8 73.00 0.097 72.20 0.189 72.10 0.279 71.70 0.367 71.40 0.896 71.20 1.240 – –

avg 30.349 0.023 30.124 0.045 30.049 0.066 29.959 0.087 29.805 0.210 29.752 0.292

