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Abstract - This paper presents a learning 
approach using cerebellar model articulation 
controller (CMAC) to accommodate faults for a 
class of multivariable nonlinear systems. A 
CMAC is proposed to estimate the unknown 
fault. Then, an adaptive fault accommodation 
controller is derived based on Lyapunov 
function, so that the proposed control system 
can accommodate the faults with desired system 
stability. Finally, the proposed fault 
accommodation control system is applied to a 
tank control system. Simulation results show 
that the proposed method can effectively 
achieve the fault accommodation for this 
system. 
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I.  INTRODUCTION 
In the presence of a failure, an on-line 

approximator can be used to estimate the 
possible fault function. The fault accommodation 
requires that the fault is self-corrected, usually 
through control reconfiguration [1, 2]. Recently 
neural networks have been applied for system 
identification and control [3, 4]. The most useful 
property of neural networks is their ability to 
uniformly approximate arbitrary input-output 
mappings on closed subsets. Several fault 
accommodation controls using neural networks 
have been proposed [5, 6]. However, the learning 
of neural network is slow since all the weights 
are updated during each learning cycle. 
Therefore, the effectiveness of the neural 
network is limited in problems requiring on-line 
learning.  

Cerebellar model articulation controller 
(CMAC) is classified as a non-fully connected 
perceptron-like associative memory network 
with overlapping receptive-fields [7]. It has been 
applied to identify the nonlinear functions for its 
good generalization capability and fast learning 
property. The CMAC has been already validated 
to be able to approximate a nonlinear function 
over a domain of interest to any desired accuracy; 
and it intends to solve the fast size-growing 
problem and the learning difficult in currently 
available types of neural networks [8-10]. 
However, the conventional CMAC uses local 
constant binary receptive-field basis function. 
The disadvantage is that its output is constant 
within each quantized state and the derivative 
information is not preserved. For acquiring the 
derivative information of input and output 
variables, Chiang and Lin developed a CMAC 
network with differentiable Gaussian 
receptive-field basis function, and provided the 
convergence analyses of this network [11]. This 
makes CMAC a suitable candidate for a wide 
class of unknown system identification. This 
paper presents a fault accommodation design 
method for a class of multivariable nonlinear 
systems by using a CMAC to estimate the 
unknown fault. Finally, a tank control system is 
simulated to illustrate the effectiveness of the 
proposed design method. 

II.   PROBLEM FORMULATION 
Consider a class of multivariable nonlinear 

dynamic systems described by [1], [6] 
)),(()( ttt xFx =&      

)]),(()()),(()()[),(( ttTttttttx xfBxηuG −+++   (1)   
where mRx ∈  is the state vector, mRu ∈  is the 
input, mmRB ×∈− )( Tt  is a matrix function 
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representing the time profile of failures where  
+∈ RT is unknown time of occurrence of faults. 

The vector nRF ∈  and matrix mnRG ×∈  
represent the nominal model dynamics. The 
unknown nonlinear function mRf ∈  
characterizes the change in the system due to a 
failure. The nonlinear function mRη∈  
represents system uncertainty including 
modeling error and disturbance, each component 

iη  of the system uncertainty η  are assumed to 

be unstructured and bounded in a domain of 
interest:  

miηtxη ii L,2,1  ,),( =≤                      (2) 

where miηi L,2,1  , =  are positive constants. 

The diagonal B  represents the time profiles of 
the fault 

))()(()( TtβTtβdiagTt m1 −−≡− LB             (3) 

III.  FAULT  ACCOMMODATION USING CMAC 
NETWORK  

Suppose a known nominal controller 

Nu causes the nominal system to exhibit some 
desired behavior. Consider a corrective control 
function to be designed, such that the control law 
is assumed to take the following form: 

CN uuu +=                             (4)  
where Cu  is the corrective control with fault 
accommodation. 
  Since CMAC has been validated to be able to 
approximate a nonlinear function with desired 
accuracy, it is utilized as the corrective controller 
to achieve fault accommodation. 

A. CMAC Network 
The architecture of CMAC is depicted in Fig. 

1. The signal propagation and the basic function 
in each space of CMAC are introduced as 
follows. 

1) Input space S : For a given n-dimensional 
input space nRS ∈= T

nsss ],,[ 21 L , each input state 

variable js  must be quantized into discrete 

regions (called an element) according to given 
control space. The number of elements, En , is 
termed as a resolution.  

2) Association memory space A: Several 
elements can be accumulated as a block. A 

denotes an association memory space with An   
)( BA nnn ×=  components. In this space, each 

block performs a receptive-field basis function. 
The Gaussian function is adopted here as the 
receptive-field basis function which can be 
represented as 
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where )( jjk sφφφφ  presents the kth block of the jth 

input js  with the mean jkm  and variance jkσσσσ . 

3) Receptive-field space R: Areas formed by 
blocks are called receptive-fields. The number of 
receptive-field, Rn , is equal to Bn  in this study. 
Each location of A corresponds to a 
receptive-field. The multi-dimensional 
receptive-field function is defined as 
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for Rnk ,,2,1 K=                               (6) 

where kγ  is associated with the kth 

receptive-field. The multi-dimensional 
receptive-field function can be expressed in 
vector notation as 

T

nR
],,,[ 21 γγγγγγγγγγγγ L=Γ                         (7)  

4) Weight memory space W: Each location of 
R to a particular adjustable value in the weight 
memory space with Rn  components can be 
expressed as 
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mq1 wwwW         (8)  

where [ ] Rn

q Rw ∈= T

qnkq1q R
w,,w,,w LL , and kqw  

denotes the connecting weight value of the qth 
output associated with the kth receptive-field. 

5) Output space f̂ : The output of CMAC is 
expressed as 

∑
=
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Rn

1k
kkqw γΓwf T

qq
ˆ , for mq L,2,1=        (9)              

It can be expressed in a vector notation as 
 ΓWW f TT

mq fff)(x, == ]ˆ,...,ˆ,...,ˆ[ˆ
1     (10) 



 3

B. Fault Accommodation Analysis 

In this section, a design methodology is 
illustrated for fault accommodation in a class of 
nonlinear systems shown in (1). Assumes there 
exists a bound such that 

*
τ),(),( ≤+

∞
txtx Jηηηη                     (11) 

where ),(ˆ),(),( *WffJ xtxtx −= is the 
approximation error for a failure function, *W  
is an unknown constant matrix that represents the 
optimal network weight of *W , and *ττττ  is a 
constant representing a uncertainty bound. Since 
the bound *τ  is general unknown, an estimation 
of this bound denoted by ττττ̂  will be derived. 
Assume a Lyapunov function )(xVN  satisfies the 
following: 

)(α)(α 21 xVx N ≤≤                    (12) 
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where α , 1α  and 2α  are finite positive 
constants. Consider the following Lyapunov 
function candidate: 
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where ˆ( ) ( )t t≡ −% *W W W  is the estimation error of 
the weight, *ˆ~ ττττττττττττ −=  is the bound estimation 
error, and 1ξ  and 2ξ  are the positive constants 

which present the adaptive gains in the 
adaptation of Ŵ  and τ̂ . From (14), the time 
derivative of V satisfies that 
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Define the m -dimensional vector 
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Using (4), (13) and (16), equation (15) can be 
rewritten as 
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where ΓWWΓWW,f *T* Tx )
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Noting in (17) that 
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where kW
~  and T

kW
&̂  are the kth columns of 

matrixces W~ and W
&̂ , respectively. Then, (17) 

becomes  
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The corrective controller is chosen as 
)](sgn[ˆˆ xτΓT

c φφφφ−−= Wu                  (21)  
in which 
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where T

mi xxxx )](),...,(),...,(sgn[)](sgn[ 1 φφφφφφφφφφφφφφφφ =  and 
sgn denotos the sign function.  

By substituting (21), (22) and (23) into (20), 
yields   
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where iϑϑϑϑ  is the i th element of J .  

IV.  SIMULATION  RESULT 

  Consider the simulations of a three-tank 
compression system. The input spaces for these 
examples are set between [-2.7 2.7]. The 
receptive-field basis functions are chosen as 

]/)(exp[)( 22

jkjkjjjk mss σσσσφφφφ −−=  for 2,1=j  and 

1 12k = − . Here, the parameters are chosen as 
4.2=jkσσσσ and 

],,,,,,,,,,,[ 121110987654321 jjjjjjjjjjjj mmmmmmmmmmmm

 
]3.3 2.7, 2.1, 1.5, 0.9, 0.3, 0.3,- 0.9,- 1.5,- 2.1,- 2.7,- -3.3,[=

for all j and k. The initial values of the adjustable 

weights kqw  for 1 12k = − , 1,2q =  are all set 
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as zero. The parameters of CMAC are set as 
9=En  and 4=ρρρρ .  

Considering a three-tank system as shown in 
Fig. 2, it’s dynamic function is given as [1] 
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where Txxx ],,[ 321=x , Tuu ],[ 21=u , g  is the 

gravity acceleration, ,ηi  for 3,2,1=i  represent 
the modeling uncertainty due to the inaccuracy 
on the cross section of connection pipes. 

2120 2gxScq P= is the outflow rate from the tank 

2. The cross section 2m0154.0=A  and the 
cross section of the connection pipes is 

25m105 −×=pS . The ,11 =c 8.02 =c and 

13 =c denote the nondimensional outflow 

coefficients. The discrete time model is derived 
by using the forward Euler approximation 

tkkxi ∆−+≅ /))()1(( ii xx& , for 1, 2, 3i =  where 

st 1.0=∆  represents the sampling period. Then 
the discrete-time format can be obtained as 

(.)](.)(.))((.)[(.))1( iiikk ηfuGFx iii +++=+ ββββ ,  
for i=1, 2, 3                           (28) 
where  if  denotes the fault function and iβ  is 
the time profiles of fault. The nominal controller 
is given as [12] 

g
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, for 1, 2i =                          (29)  
where .10=a  Initial condition is set to be the 
liquid levels m15.0)0()0()0( 321 === xxx , and 
the control objective is to keep all the liquid 
levels at 0.2m (i.e. mkxkxkx ddd 2.0)()()( 321 === ). 

For simulation purpose, the modeling 
uncertainty bounds are set as ii ηtxη ≤),( , where 

3

1 105.3 −×=η , 3

2 105.2 −×=η and 3

3 105.6 −×=η . 

Three simulation cases are illustrated: 
Case 1 : The 1x , 2x  and 3x  are in the regular 

condition with 0)(1 =kf  and 0)(2 =kf  and use 

the control input 0=iu , for 1, 2i = . The 
simulation results are shown in Fig. 3. 
Case 2 : The 1x , 2x  and 3x  are in the regular 

condition with 0)(1 =kf  and  0)(2 =kf  and 

use the control input  iNi uu = , for 1, 2i = . 

The simulation  results are shown in Fig. 4. 
Case 3 :  Considering an abrupt leakage in tank 
1 and an incipient leakage in tank 2, whose 
failure dynamics are [1] 

2
1 1 1 1( ) 2 ( )f k c gx kπγ= −  

),()( 111 TkUTk −=−ββββ  2701 =T  
2

2 2 2 2( ) 2 ( )f k c gx kπγ= −  

),()1()( 2

)(

22
2 TkUeTk Tk −−=− −−ααααββββ     

426;063.0 2 == Tα  

where 2

1 103.7 −×=γ  and 2

2 104.8 −×=γ . Using 

the control inputs iCiNi uuu += , for 1, 2i = , 
the simulation results are shown in Fig. 5.         
    The simulation figures show the trajectories 
of 1,x 2,x 3,x  and the control inputs 1u  and 

.2u  As illustrated in Fig. 5, the fault 
accommodation scheme is effective in correcting 
the effect of the unknown fault by attaching the 
corrective controller to the nominal controller.  

V.  CONCLUSIONS 

A fault accommodation method using the 
cerebellar model articulation controller is 
proposed. The fault accommodation scheme is 
derived based on Lyapunov function, so that the 
accommodation control system is guaranteed to 
be stable even in the present of faults. The 
proposed fault accommodation control system is 
applied to a tank control system. Simulation 
results show that the proposed design method 
can effectively achieve the fault accommodation. 
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Fig. 1 Architecture of a CMAC 
 
 

 
Fig. 2. Three-tank system 

 
 

 
Fig. 3. Tank system without fault, 

0=iu ( 1x , 2 ---, 3 )x x − − −  
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Fig. 4. Tank system without fault, iNi uu = , 

 
 

 
Fig. 5. Tank system with fault occurring at 

1 2270, 426T T= = , iCiNi uuu += ,  

 ( 1x , 2 ---, 3 , 1x x u− − − , 2 )u( 1x , 2 ---, 3 , 1x x u− − − , 2 )u


