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Abstract 
 

A sequential selection combining (SQC) scheme based on signal detection is proposed and analyzed for 
dual-branch space diversity over Nakagami fading channels. The complexity of the SQC is lower than the 
maximal-ratio combining (MRC). The SQC can be shown to have a better performance than the selection 
combining (SC), where the BPSK is considered as an example for illustration and its average bit error rate 
(BER) is derived and evaluated. Numerical results are presented to demonstrate the SSC performance. 
 

I. Introduction 
 

Space diversity with dual reception antennas is a valuable technique to enhance the receiver performance 
for wireless communications [1]-[3]. With space diversity, the received signals of the dual antenna 
branches may be linearly combined to combat the wireless fading effects [4]. 
 
In different linear combining methods, the conventional MRC yields a minimum symbol error probability 
for the signal detection at the receiver site.  For coherent modulation, although the MRC yields an optimal 
detection performance, its implementation involves the coherent addition of dual-branch signals, which is 
power-consuming and not cost-effective, and thus impractical for commercial applications. 
 
On the other hand, the dual-branch SC utilizes the branch (say branch 1) with a larger SNR for signal 
detection.  The SC is suboptimal but its implementation complexity is much lower than that of the MRC. 
However, with the pure SC, the information from the other branch (i.e. branch 2) with a lower SNR is 
wasted. In this sense, the performance of the SC can be enhanced by using the information collected from 
branch 2. At the selection stage in the SC scheme, since the signals and channel estimations of dual-
branches are already obtained, the information from both branches should be used for following signal 
detection. 
 
In this paper, based on the above viewpoint, the conventional SC is improved with signal detection on 
wireless fading channels.  
 

II. SQC and Fading Channel Models 
 
In the context, the discrete-time model is employed. Thus, for a transmitted symbol ms  (m=0,1), the 
received signal of diversity branch l  (l=1,2) at any discrete-time instance is 
 , 0,1l l m lr s n mα= + =  (1) 
where lα  is the fading factor with the probability density function (PDF) denoted by ( ),lf ⋅  and ln  is the 
additive Gaussian noise with a zero mean and variance 0 / 2N [5].  
 



For BPSK modulation, 1 bs E=  and 0 bs E= − may be used, where bE  is transmitted signal energy. 
Throughout the paper, the independent Nakagami fading channels are considered to model the dual 
wireless channels. 
 
Let 2

0/l l bE Nγ α=  be the faded SNR of branch l ( 1,2).l =  For the Nakagami fading channel, the PDF of 

lγ  ( 1,2)l = is given by [6] 
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where 1/ 2lm ≥  represents the fading severity and [ ].l lEγ γ=  When 1,lm =  (2) also characterizes the 
PDF of Rayleigh fading factor. Let 12 ( , )f ⋅ ⋅  denote the joint PDF of 1 2( , ).γ γ  For the independent 
Nakagami fading channels,  12 1 2( , )f γ γ =  1 1 2 2( ) ( ).f fγ γ  

 
According to the MRC and/or the MAP detector, under fixed 1 2( , ),α α the decision variable for signal 
detection is given by 1 1 2 2 ,r rα α+ and the corresponding decision test is [5] 
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Now, suppose that the branch with a larger SNR (say branch one) is first selected for signal 
detection, and assume that 2 2 2= rη α−  is already known for the time being, then the test given by 
(3) becomes 
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where 2η  functions as a test threshold for the signal detection. Thus, although only one diversity branch is 
used as in the SC, for the above signal detection problem, the optimal decision test should not be the 
conventional one in which the signal of the selected branch is only compared to a zero threshold. If a non-
zero test threshold can be set in some meaningful way, the detection performance will be better than that 
of the conventional SC, but with a lower implementation complexity than the MRC. 
 
With 2 2 2 2= ( ),ms nη α α− +  (4) can be rewritten as 
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where 2
1 1 2 mr sα α+  is the test statistic and 2 2nα−  is the threshold analogy. Two observations are made 

here. First, for the decision variable given in (5) we have 
 2 2

1 1 2 1 1 1 2 0r s r sα α α α+ ≥ +  (6) 
Second, under fixed 2α  (i.e. with channel estimation in the practical diversity combining), 2 2nα−  in (5)  
has a zero mean. Consequently, if branch l is selected on the basis of l lγ γ>  with 3 ,l l= −  then a 
reasonable decision test based on (5) and (6) should be 
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Meanwhile, if 
 
 2 2

0 10 and >0l l l ll lr s r sα α α α+ < +  (8) 



then another branch (i.e. l ) is used with the decision policy also given by (7) for signal detection. 
Nevertheless, if both ranges of the dual-branch signal are located in the region given by (8), the 
conventional SC is employed for signal detection. 
 
An interesting notice is that the above signal detection policy also yields a new diversity combining 
method. In the new combining scheme, the receiver first selects the branch with a larger SNR for signal 
detection but with non-zero test thresholds 2

bl Eα−  and 2 .bl Eα  If a detection decision cannot be made, 
the other branch with a lower SNR is then used with the two non-zero test thresholds. If the decision 
cannot be made either, the branch with a larger SNR is utilized with a zero test threshold for signal 
detection, where now the decision space becomes more specific than that of the pure SC because the dual-
branch signals are already in smaller uncertain ranges in the signal space. 
 
The SQC will outperform the conventional SC since the uncertain signal space is smaller, and since it 
does not use the coherent addition as in the MRC, it has less complexity than the MRC. 
 

III. BER Evaluation 
 

Let 2
lj l l jly r sα α= +   for 1,2l =  and 0,1.j =  Under fixed fading factors 1 2( , ),α α if ms  has been 

transmitted, ljy  has a Gaussian distribution with the mean 2 2
3l m l js sα α −+  and the variance 2

0 / 2.l Nα  

Suppose branch one is first selected with 1 2.γ γ≥  With the SQC, under the situation that 0s  has been 
transmitted, the BER can be evaluated by 
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where erfc( )⋅  represents the complementary error function, 
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and 
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Similarly, if branch two is selected with 1 2 ,γ γ≤  the BER under the situation that 0s  has been transmitted 
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For equally probable symbols, the final average BER can be evaluated as 
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The average BER given by (14) can be easily obtained by using computation tools such as MATLAB. 
 

IV. Numerical Results and Conclusions 
 

For numerical evaluations, without loss of generality, the balanced case of 1 2γ γ γ= = is considered to 
alleviate parameter assignments. In Fig. 1, the average BER for different values of m is presented, where 
the case of 1m = is for the Rayleigh fading channel. From the numerical result, the SQC has a lower 
average BER than the SC for the Rayleigh and Nakagami fading channels. The numerical result also 
validates the BER comparison presented in the above analysis. In addition, the SQC performance over 
other fading channel models can also be examined in the same way.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 1 Average BER for the SQC and SC. 
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