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Abstract - The data collected from in-process
measurement usually contain useful information about the
nature of the source of process variability. In this paper,
- each variation source is assumed to generate a different
spatial variation pattern in the quality characteristics
measurements. The variation source might also reveal

interesting temporal pattern over the data sample. The
 spatial variation pattern and temporal pattern caused by a
variation source may turn out to be the observed within-
and between-part variations in the monitoring of product
measurements. The study reported in this paper aimed at
applying independent component analysis (ICA) to monitor
within- and between-part variations. Various monitoring
statistics obtained from ICA are used to construct the
control procedure. The average run length (ARL) is used to
measure the abnormalities detection performance. An
extensive comparison based on simulation study indicates
that the ICA-based control charts perform better than
conventional control charts in terms of ARL. The paper
contributes to the monitoring of within- and between-part
variations.
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I. INTRODUCTION

In statistical process control (SPC), control charts are
often used to discover the occurrence of assignable causes
by monitoring the quality measurements collected over
time on a process. Charting statistics outside the control
limits reveal the occurrence of assignable causes of
variation that must be searched or removed from the
process. The estimate of chance causes variability used to
establish the control limits of variable charts is often
based on within-subgroup variability. In various practical
applications, there are several independent variation
sources that increase the entire variability of the measured
data [1] and [2]. Every variation source may incur a
different spatial variation pattern across the measured part
- characteristics. In addition, the variation source may also
reveal temporal pattern over time. The information
provided by variation pattern can facilitate the monitoring,
diagnosis and eliminating of the root causes. As an
~example, consider a variation source follows a Bernoulli
distribution. This type of variation sources is widely
observed in manufacturing processes. The possible causes
of these variation sources may be attributed to two
parallel machines carrying out the identical operation or
the usage of raw materials or components purchased from
distinct suppliers.

The spatial variation pattern and temporal pattern
caused by a variation source may turn out to be the
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observed within- and between-part variations in the
monitoring of product measurements. An appropriate
method for monitoring within- and between-part
variations can provide a wealth of information and enable
process operators to take proper actions when
abnormalities are detected. It is useful to apply the so-
called 7—=MR-R/S chart [3] for monitoring this type of
data. The combination of the three charts provides a
method of assessing the stability of the between-part
variation, and the within-part variation.

The aim of this research is to apply the independent
component analysis (ICA) to address the monitoring of
within- and between-part variations. We assume the
spatial pattern caused by the within-part variation is a
known nature of the current process and it is difficult or
impossible to eliminate. In other words, this source of
variability is treated as inherent. We concentrate on the
monitoring the temporal pattern caused by variation
sources.

II. INDEPENDENT COMPONENT ANALYSIS

Independent component analysis can be seen as a
signal processing method used to transform observed
multivariate  data into  statistically independent
components that are expressed as linear combinations of
observed variables. ICA is usually used for revealing
latent factors that underlie sets of random variables,
signals, or measurements. ICA was originally proposed to
solve the blind source separation problem, which involves
recovering independent source signals (e.g., different
music, voice, or noise sources) after they have been
linearly mixed by an unknown mixing matrix A .

Several different algorithms for ICA have been
proposed. In this section, we briefly describe the fast
fixed-point ICA algorithm (FastICA) that was developed
by Hyvirinen [4]. In the following discussions, scalars
are written in italic lower case, vectors are written in bold
lower case and matrices are written in bold capitals. In the
ICA algorithm, we assume that 4 measured variables
X, %5, X, are expressed as linear combinations of m

( £d ) unknown independent components s;,s,, S, -

The measured variables and the independent components
have means of zero (i.e., mean-centered). If we denote the
x=[x,%,,»x,]" and

random column vectors as

s=[s,5,, 5,1, the relationship between them can be
expressed as
x=As (1)
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where A=[a,,a,,-.a,] € R*" is the unknown mixing
matrix. When » samples are available, the preceding
relationship can be rewritten as

X=AS+E )
where Xe R*" is the data matrix, Se R™ is the

independent component matrix, and Ee R®™ is the
residual matrix. :

The basic problem of ICA includes the estimation of
the mixing matrix A as well as the independent
components S from the measurement data matrix X .
The purpose of ICA is equal to estimating a demixing
matrix W so that the elements of the reconstructed vector
S, written as:

S=Wwx 3)
get independently. The drawbacks of ICA include: (1)
only non-Gaussian independent components can be
reconstructed, (2) neither orders, powers, nor signs of
independent components can be estimated. For
mathematical convenience, we define that the
independent components have unit variance. The first
step in ICA is whitening or called sphering. Its purpose is
to remove correlation between the observed variables.
Measured variables x are transformed into uncorrelated
variables z by using whitening. Consider a random
vector x(k) at sample &, the whitening transformation
can be expressed as
z(k)= A7"2UTx(k) = Qx(k) 4)
where Q=A""2U" is called the whitening matrix, and A

(diagonal matrix of its eigenvalues) and U (orthogonal

matrix of eigenvectors) are created from the eigen-
decomposition of the covariance matrix E(xx”)=UAU" .
Following the transformation we have
z(k) = Qx(k) = QAs(k) = Bs(k) (5)
where B =QA is an orthogonal matrix as verified by the
following relation:
E{z(k)z" (k)} =BE{s(k)s” (k)}BT =BB” =T (6)
We can estimate s(k) from Eq. 6 as follows:
S(k)=B"z(k) = B"Qx(k) @)
From Egs. (3) and (7), the relation between W and B
can be rewritten as
W=B"Q 03 ()
The objective of finding the matrix B is to make §
becomes as independent as possible. It has been shown
that non-Gaussian represents independence. Non-
Gaussianity is often measured by kurtosis and negentropy.
The kurtosis method is simple but it is susceptible to the
occurrence of outliers. The negentropy measure is built
on the information theoretic quantity of entropy. Based on
approximate form for the negentropy, Hyvirinen [4]
presented a simple and highly efficient fixed-point
algorithm for ICA, calculated over sphered zero-mean
vectors z . This algorithm computes one column of the
matrix B and permits the identification of one
independent component. The corresponding IC can be
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found using Eq. (7). We repeat the algorithm in order to
calculate each independent component. After calculating
B, we can obtain s(k) and demixing matrix W from Eqs.
(7) and (8), respectively. For a detailed description of the
FastICA algorithm, see Hyvérinen [4], and Hyvirinen and
Oja [5]. '

[II. MONITORING OF INDEPENDENT
, COMPONENTS
A.Monitoring of between-part and within-part variations

We use the following model to represent the
between-part  and  within-part  variations.  Let

x=[x},%,,....x,]" be a dx1 random vector that represents

a set of d measured characteristics across a given part,
and N represents the number of parts in the sample. We
assume that x follows the model x=As . It is interpreted
that there are m independent variation sources
{s;:i=1,2,-,m} that affect the measurement vector x .

The matrix A captures various variation sources result in
within-part variations. Each source linearly affects x that
is represented by the corresponding column of A . The
quantity a;s; defines the effect of the i* source on x .

The variation pattern vector, a, , shows the spatial nature

of the variation cause by the i# source. Due to the reason
that the elements of s are scaled to have unit variance, a;

also indicates the severity or magnitude of the i* source.
Throughout this paper, we assume that the noise variables
associated with each elements of x are uncorrelated and
have equal, but unknown variance. In other words,

of =0} =--=0% . The random noise illustrates the
accumulated effects of measurement noise and any
natural variation not explained by the sources. In
situations where the elements of x are similar entities
gained through same measurement rules, this can be
considered as a rational assumption. The purpose is to
estimate each of the variation pattern vectors in A , and
the number of variation sources, m , using a sample of
observations of x . The estimated pattern vectors are used
to clarify the characteristic of the spatial variation and
furnish diagnostic knowledge about the root causes.

In the course of process diagnosis, it is usually
helpful to estimate A as well as the source signals. The
columns of A give information on the spatial nature of
the variation patterns, on the other hand the estimated
source signals give information in the temporal
characteristic of the variation over the data sample. In the
proposed approach, it is assumed that the fixed
differences due to the measurement position are inherent
to the process monitored. In other words, these variations
are assumed to be very difficult or impossible to remove
even after one makes a serious effort for improvement.
The main focus of this paper is on monitoring the
temporal variation of source signals.

B.On-line monitoring with ICA




This section describes the on-line monitoring using
control statistics obtained from ICA. Some discussions
gbout ICA monitoring with univariate SPC or
multivariate SPC can be found in [6]-[9]. In the normal
operating condition, designated X, .., W as well as
§
(S
variables is equivalent to the number of independent
components. The matrices B, Q, and A used in Eq. (5)

are obtained from the FastICA algorithm

normal

=WX, oma ) Dy assuming that the number of

normal

are also obtained by whitening and the FastICA algorithm.

As mentioned in the previous section, the data dimension
can be decreased by choosing a small number of rows of
W based on the assumption that the rows with the largest
sum of squares coefficient hold the greatest effect on the
variation of S . The a rows of W are chosen to
constitute a reduced matrix Wy (dominant part of W),
and the remaining rows of W form a reduced matrix W,
(excluded part of W ). The reduced matrix B, can be
constructed by choosing the columns from B whose
indices correspond to the indices of the rows selected
from W. The matrix B, is computed directly using Eq.
@8), ie., B, =(W,Q™")" . The matrix B, is comprised by
the remaining columns of B . Then, new data for sample
k, x(k) , is transformed to new independent data vectors,
s(k) and s, (k), through the demixing matrices W, and
W, ie., §,(k) = W,x(k) and s (k)= W,x(k), respectively.
Lee et al. [7] introduced three control statistics for
purposes of ICA process monitoring, namely 77, 17 and

SPE (squared prediction error). When the I; statistic
falls beyond the confidence interval, it shows that a
process change has occurred in the model space. When
the I statistic falls beyond the confidence interval, it
implies that a process change has taken place in the
excluded model space. Finally, if the SPE statistic of
residual space exceeds the limit, it implies the presence of
process changes that break the ICA model. The control
statistics at sample k can be defined as follows.

13 (k) =8,4(k)"84(k) &)
12 (k) =8, (k)" 8 (k) (10)
SPE(k) = e(k)" e(k) (11)

where X(k) can be determined in the following manner:
X =Q7'B,8(k) =Q'ByWyx(k) (12)
The control limits for the aforementioned control
statistics must be calculated in order to utilize the ICA-
based monitoring charts. To accomplish this purpose, we
adopt the following procedures in the set-up phase of
control charting procedure.

(1) Obtain time-series data when a process is operated
under normal conditions. Normalize each row
(variable) of the data matrix using the mean and
standard deviation of each variable. That is, adjust it
to a zero mean and unit variance, if necessary.

(2) Apply ICA to the normalized data, calculate a
separating matrix W , and determine independent
components.

(3) Calculate 17 , I? and SPE values from normal

operating data. The non-parametric kernel density
estimator is applied to estimate the density function

of the normal 72, I? and SPE values. The point
which occupies the (1-«)% area of density function
can be obtained and becomes the control limit of
normal operating data (77, 17 or SPE values), where

a is the predetermined false alarm rate when the
process is in normal operating mode.

IV. RESULTS

To illustrate the performance of the ICA-based SPC
(ICA-SPC) over the conventional /- MR—R/S chart, we
apply these methods to the monitoring of diameters
measured at nine locations on a part. In this comparison
average run length (ARL) is used to assess the
abnormality detection performance. The ARL is defined
as the average number of points that must be plotted
before an out-of-control condition is determined. Early
detection of abnormalities is important for statistical
process control, hence, a well-designed control method
should give small ARL values when the process changes
while maintaining a large ARL value when there is no
change in the process.

Consider three uncorrelated source variables (signals)
that have the following distributions:

51(k) = 2cos(2.5k)sin(0.1875k) (13)

s, (k) =sin((zr/4) * k) + cos((z /8) * k) (14)
s3(k)= uniformly distributed noises over the interval

[—3.+43] (15)
These sources s=[s,s,,s;]’ are linearly mixed as

x = As with the mixing matrix A, defined in Eq. (16).

Fig. 1 illustrates the spatial nature of the variation due to
the above-mentioned sources. One data set obtained from
the normal operating condition was used for analysis. We
generated 1000 mixed data samples of x and add random
noises with standard deviation 0.1 to the data. This data
set was used to calculate a separating matrix for the ICA-
based SPC and to estimate control limits. In this paper,
the separating matrix was determined by the FastICA
algorithm developed by Hyvérinen [4]. We set a to
0.0027 for each chart in the group of /- MR—-R , which
corresponds to the false alarm allowed in conventional
control charting (i.e., 3-sigma control limits). The 99.73%
confidence limits of each chart in /—MR—R are obtained
from kemel density estimation of normal operating
condition data [8]. For a fair comparison, the confidence

limits of 72 —I? — SPE are chosen to have in-control ARL
that is as close as possible to that of 7— MR—R chart.
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0.8792  0.1815 -0.7543
0.9217 0.2248 0.1233
0.9094 —0.1513  0.8964
~02412 04561 -0.8128
A= 0.1218 - 0.1183 0.3215
02619  0.5341  0.8972 (16)
0.4825  0.8481 -0.8591
—-0.1315 09162 0.4583
0.5638 0.8685 0.7892

The disturbance considered in this paper is a step
change of s, by A units introduced at sample 33. Here,
each ARL value is computed based on 10000 replicates.
The detection results are summarized in Table I. The
results reported for I —I2 —SPE chart include different
combinations of dominant ICs. The notation IC; ={s;,n;}
represents the extracted dominant ICs include source
signal and random noise. Studying the entries in Table I
shows that the ARL value decreases as the shift size
increases, regardless of the type of monitoring method.

Examination of Table I shows that I —I2-SPE can
detect abnormalities faster than /- MR—R/S chart.

S3 S3

& 7NN,
N N N> )
(RS )
ChRy Y N
1 N S,

Fig. 1. The spatial nature of variation sources.

One of .the monitoring results from using /- MR-R ,
and 72 —I12-SPE when the shift size is 2.0 is shown in
Figs. 2 and 3, respectively. It is assumed that variation
sources s, s, , and s; are chosen as dominant ICs . The
control limits denoted in dashed line are also exhibited in
these figures. It is obvious that no indication of an out-of-
control status is observed in the first 32 samples. As
displayed in Figs. 2 and 3, the individuals chart detects
the significant deviation at sample 43 (equivalent to a run
length of 11) while 72 chart detects it at sample 38. This

example I2-1*-SPE can detect

abnormalities faster than /—MR-R chart. One thing
needs to be noted is that R chart may display a similar
temporal pattern as that of / chart due to the fixed

difference captured in A, . This can be evident from

confirms that

comparing 7/ and R charts in Fig. 2. The property
implies that a specific assignable cause might result in
out-of-control signal in two different charts and is
complicated to deal with.

In the following the detection ability of the various
monitoring statistics are compared. In the 10000
replicates, the number of abnormalities caught with each
chart is termed as detection rate. The results, given in
Tables II and III, indicate that the detection rate for each
chart depends on the magnitude of the disturbance.
However, from Table II it can be concluded that the

detection rates for individuals chart are considerably
higher than other charts as the shift size increases. Similar
observation can be found for /7 in the I -1I;-SPE
chart. It is also worthy to compare the detection abilities
of various charts in the cases of structure change. It is
assumed the source signals are mixed by matrix A,
defined in Eq. 17. The results are summarized in Tables
IV and V. As expected, the abnormalities are largely
detected by R chart. For ICA-based SPC, the

abnormalities are usually caught by I} and SPE charts.
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Fig.2. [ —MR—R chart.
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Fig.3. I} =12 - SPE chart.
08792 0.1815 -0.7543
09217 02248 0.1233
0.9094 —0.1513  0.8964

~02412 04561 - 08128

A, =| 06209 —0.1183 03215 (17)

0.5615 05341 08972

| 04825 01502 —0.8591
~01315 02159 04583

0.5638 0.1704 0.7892

TABLE I ARL VALUES

A 1-MR-R ICA ICA

ICA ICA ICA
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ICy = {s,57,53} ICy = {n,, ny, n3} ICy ={sy, 55} ICy = {s3, 53} ICy ={s,}
0.0 169.4 170.5 172.0 171.6 171.1 171.7
0.1 173.3 170.2 167.1 164.7 68.58 STl
0.2 166.6 155.5 154.0 129.0 28.52 26.67
1.0 49.93 12:55 34.96 6.213 6.703 6.537
2.0 5.323 4.442 5355 3.044 2.965 2.966
TABLE Il FAULT DETECTION RATES OF / — MR - R CHART
A It MR + R + I only MR only R only [ and MR and I and R I, MR
others others others MR R and R
0 3284 3433 3370 3200 3346 3367 84 3 0 0
0.1 3776 3396 2931 3685 3293 2919 91 12 0 0
0.2 4578 3191 2325 4496 3097 2313 82 12 0 0
1 4439 678 5158 4203 633 4891 8 39 230 2
2 6122 132 4108 5776 116 3746 0 16 346 0
TABLE Il FAULT DETECTION RATES OF /3 —1% —SPE CHART
A 1]+ 12+ SPE + I; only 12 SPE only 1} and 12 and 1} and 17, 12 and
others
others others only 12 SPE SPE SPE
c
0 2583 4128 3962 2573 3460 3295 6 663 5 1
0.1 2630 4106 3884 2621 3491 3268 4 611 5 0
0913158 3730 3667 3144 3182 3120 8 541 7 1
1 9471 309 315 9422 236 254 34 46 22 7
2 9846 117 99 9799 76 67 30 15 21 4
TABLE IV_FAULT DETECTION RATES OF / - MR — R CHART FOR STRUCTURE CHANGE
1 +others MR + IRk I only MR only R only I and MR and / and R I, MR
others others MR R and R
A, 6 2595 9057 4 939 7399 0 1656 2 0
TABLE V
FAULT DETECTION RATES OF /3 —/2 —SPE CHART FOR STRUCTURE CHANGE
I} + 1k + SPE+ I only 1} only SPE only I} and 17 and I} and I
others others others 72 SPE SPE and SPE
c
A, 0 10000 8533 0 1467 0 0 8533 0 0
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