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Abstract:

Adaptive filter and double-talk detector (DTD) are two
essential parts in acoustic echo cancellation of hands-free
communications. The  generalized  frequency-domain
multidelay adaptive filter (GMDF) is an attractive choice due
to its convergence properties and computational parsimony,
Very reeently we presented a rebust time-domain DTD
cquipped with a near-end voice detector, a double-to-single
talk detector and two auxiliary filters [7]. In this paper, we
expand the work of [7] to introduce a frequency-domain DTD
combined with the rvegularized GMDF adaptive filter.
Extensive simulations demonstrated the proposed system was
capable of differentiating echo path changes from double-talk
situation, and performed better than other competitive
schemes,
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1,  TIntroduction

Acoustic echoes are major sources of annoyance in
hands-free communications such as mobile radiotelephone,
speakerphone, teleconferencing and video conferencing. In
these applications, acoustic echo canceller (AEC) is
employed to reduce the annoying acoustic echo by means
of estimating the loudspeaker-enclosure-microphone system
with adaptive filter. The acoustic echo cancellation process
becomes complicated whenever the near-end speech and
far-end speech occur simultaneously, the so-called double
talk (DT) mode. In this DT stage, the adaptation of the
adaptive filter will be severely disturbed by the near-end
signal. Therefore, a dependable double-talk detector is
required to decide whether it is in DT mode. If so, the AEC
has to either sfow down or freeze the adaptation of the filter
to prevent it from divergence [1-4, 7-9].

In hands-free communications, the movement of
objects or people changes the acoustic echo paths and
introduces a more difficult problem for double-talk detector
(DTD). The DTD might see the double-talk situation as
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change of echo path. In that case, the adaptive filter will
keep updating and result in the divergence of the system.
On the other hand, the DTD may declare echo-path changes
as DT mode. Therefore, researchers have been looking for a
DTD which is able to efficiently differentiate echo-path
changes from DT mode [1], [4], [7] for the past 10 years.

Recently we presented a time-domain DTD equipped
with a near end voice detector (NEVD), a double-to-single
detector (DSD} and two auxiliary filters [7]. This DTD
system performs well in transition of double-talk and single
talk and can distinguish between echo-path changes and
double-talk mode. The auxiliary filters give the AEC a
better chance of saving good estimate of echo path during
the transition from single-talk to double-talk. This DTD
system [7] was shown to outperform Park’s method {8].

The generalized multidelay frequency domain adaptive
filter is attractive in the application of AEC. The GMDF has
very low computational complexity due to the usage of fast
Fourier transform (FFT). Qur recent paper [6] derived a
very relaxed fixed common step-size bound for GMDF
which made it more practical. That is, we now could choose
suitable fixed common step-size to maintain good tracking
and convergence performance as well. Just like the
regularization process considered for the normalized
least-mean-square (NLMS) algorithm, the GMDF could
perform better by properly regularized in the frequency
domain. Based on the step-size bound analysis in [6], we
developed a regularized GMDF algorithm [5] recently.

In this paper, we expand the idea of [7] to introduce a
frequency-domain IXTD combined with the regularized
GMDF adaptive filter. The proposed DTD system
performed well during double-talk stage in an echo-path
changing scenario. The superiority of our method was
verified by extensive simulations.

2. Summary of the regularized GMDF algorithm [5]

We summarize the regularized GMDF adaptive filter
in this section. Consider the GMDF with L sub-filters,
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each of order N, and FFT size is 2N . Without loss of
generality, we assume that M =NL where M is the
order of the GMDF adaptive filter. The GMDF uses a
positive integer « to control the overlap between the
successive input blocks. Consequently, it updates the
coefficients every R=N/a samples. In the &” block
iteration, defining reference input vector x, and desired

response vector y, , respectively, as
X, =[x(kR),x(icR+1),---,x(kR+N-1)]T, (1)

¥; = [V(R), y(kR +1),-+, y(kR+ N ~1)]". @)
Frequency-domain input vector for /* sub-filter, denoted
as X, /=12,~,L iscomputed as

T
X = FFT[XI-J.:’XLU—”&:I . ()

The corresponding frequency-domain coefficient vector
H,, isdefined accordingly as

H,, = FFT[n],, 0.7, @)
where h,, is the /" sub-filter’s time-domain coefficient
vector. Output vector of filter &k is calculated as

a,, = last N points of

L , 5
FFT™ [Z H, ® x,.k} ©)

=l
where ® denotes element-wise multiplication. Frequency-
domain error vector E, is obtained as follows

€. =Y, -ak » (6)
E, = FFT[05,,¢7 ] . 0

The frequency power of the /" subfilter at &" block
iteration is calculated as

Z.’,k = ABZ.',I:—I +(1 _ﬁ))_(u: ® Xl.k s (8)
where }_(,_A_ denotes the complex conjugate of X, ,, and
p is a forgetting factor. The coefiicient vector H,, is
updated as

H o =H,+ Z#E;DF @ 9
where g1, 15 a fixed common step-size parameter of
the GMDF filter, In (9), ®@,,, the new information for
updating, is obtained as

®,, = FFT[‘i’{k’Oirxr]T > (10)

and

¢,, = first part of FFT ™ [(E;‘ ®X,.)

@(Zm +6- 1,0 ):I
where © denotes element-wise division and & denotes
the regularization parameter. The regularization parameter
& has to be greater than & - 41, . It was shown in [5]
that a workable, more conservative choice is

8 >3 upr 0, -

, (11)

(12)
3, The proposed DTD

The block diagram of an acoustic echo canceller
equipped with the proposed DTD in frequency-domain is
illustrated in Fig. 1. Our DTD includes a near-end voice
detector (NEVD) and two auxiliary filters. The role of
NEVD is to control the adaptive filter in working or halting
status. The auxiliary filters are to save good estimates of
echo path so as to prevent the AEC from divergence.

3.1. NEVD indicator &,

Since GMDF algorithm updates the coefficients every
R samples at £” block iteration, we obtain the
frequency domain desired response vector Y, , and filter

output vector ﬁk , with FFT size R as follows

Y, = FFT [last R point of y,] , (13)

Dy = FFTlast R point of 4, ] . (14)

Let O'%;’k and a% represent the estimated power of

&
y(n) and c?(n), respectively, in frequency domain at &™
iteration, and being calculated respectively as

oy i = Bov e +(1-B) ¥, @Y, (15)
oh, =Bof,  +(1-B)D, ®D,. (16)
Finally, the Rx1 NEVD indicator vector &, is defined as

E, = /J%,kOUa’,{, (7

where v denotes element-wise square root,

To reduce the possibility of erroneous decision, we use
L consecutive indicator vectors to determine whether the
system is in DT mode. Defining the decision variable g,

at k" iteration as
g =AvglE, .} =12, L, (18)
where Avg {-} denotes average operation on the vector’s
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elements. Letting indicator 5, =0 if g, <T, or b =1 if
g, 2T, where T is a parameter obtained via extensive

experiments. Defining the DT verification vector B, as
B, =[8 b - B]. (19)

Again, choosing a threshold 7, if Avg{B,} <7, then

setting Spr, =1 and declaring the system is in DT mode.

Otherwise, the system sets Spr , =0.

3.2. Aauxiliary filters

Our AEC uses two auxiliary filters: AF, and AF;, both
filters are employed only to store estimated echo path for

later use. The filter output c?(n) is produced by the
regularized GMDF at all times. Auxiliary filters work as
follows. At k” block iteration, if Sy, =0, itis NOT in
the DT mode, the GMDF keeps updating the coefficients
and the counter C,. increases by one. When C,,
reaches a preset T, coefficients of AF, are copied into
AF,, followed by copying coefficients of the GMDF to AF,,
then reset counter C,. to zero. If Spr, =1, it is in the

DT mode, AEC freezes adaptation of the GMDF, copies
coefficients of AF, to AF; and to the GMDF as well. The
role of AF,; is to have a buffer filter so that the AEC would
have a higher probability of storing good acoustic echo path
estimates during the transition from single talk to double
talk.

4,  Computational Complexity

We examine the computational complexity of the
proposed DTD with regularized GMDF algorithm. The
regularized GMDF algerithm requires five 2N —point

FFTs for each block iteration. The DTD requires 2R
—point FFTs and 10R real multiplications (RM) to

caleulate NEVD indicator vector &,. A 2N —point FFT
requires 2Nlog,N RM. Therefore, the GMDF requires
approximately o {{6+4L)log, N+8L+6} RM and the

DTD needs 2log, (R/2)+10 RM for each data sample
processed. In summary, the proposed system consumes
a{(6+4L)log, N +8L+6} + 2log, (N/2a)+10 RM for
each sample. In comparison, the time-domain DTD with

NLMS filter of [7} requires about 2LN+8 RM each
sample. We illustrate this comparison by means of the
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following examples. Given N =128, L=4, and a=4,
the RM required by [7] is 1.32 times of our proposed
system, and for ¥ =512, L=2, and a=1, [7] requires
12.0 times RM of ours. Park’s DTD employs NLMS
algorithm, therefore, it exhibits similar computational
complexity as that of [7].

5. Simulation results

We now investigate the performance of our DTD
combined with the regularized GMDF via simulation. The
regularized GMDF was employed to estimate a 512-tap

acoustic echo path, h,,(n), measured in a small office at

8000 Hz sampling rate. The excitation signal was a
t6-second Chinese speech. White Gaussian noise with SNR
39dB was added to the acoustic echo. Double talk situation
and sudden echo path change were considered in the
simulation. We compared the performance of our DTD to
two competitive algorithms: Park’s DTD [8] and the
time-domain DTD presented in [7].

The regularized GMDF chose g, =0.6%R,
L=4, a=4,and NLMS was run with ¢ =0.6. Choosing
step sizes this way gives both adaptive filters the same
convergence properties when input signal is a white
Gaussian process [6]. Parameters of our proposed DTD
were chosen as T, =32, T=065 and 7.=075.

Parameters of [7] were chosen to be &(r)=0.65 and
£'(k)=0.95. Parameters of Park’s DTD were chosen as
e,y (m)=0.35 and p; ,(#) =0.8. It should be noted that

these settings were suggested in [7] and [8]). The echo
return loss enhancement {(ERLE) and the normalized
squared coefficient error (NSCE), used to evaluate the
performance, were defined as

(y(m) - s(m)’

ERLE(n)=10log,,~~————2_
(e(n)—s(m))

(20

and

h,, () ~h(a)

2
hopf (n)"
respectively. Note that we have included s(n) in (20) so

as to better evaluate the performance of AEC during DT
stages,

The first experiment had DT periods from 11 to 14
seconds, and the acoustic echo path h_,(n) was circularly

NSCE(n) =10log,, , @n

ot
shifted by 200 samples at time 5.3. Far-end speech x(n)
was shown in Fig. 2. Simulation resulis are illustrated in
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Figs. 3-5. Fig. 3 shows that the Park’s method made a few
wrong decisions to declare DT mode when echo-path
changed. Fortunately, this did not cause any extra ERLE
loss comparing to the time-domain DTD [7]. During DT
stage, Park’s method declared single talk status from 13.84
to 14 seconds. Note that there was a slight decision delay

occurring at the beginning of DT stage for all three methods.

As a result, the error increased dramatically at the
beginning of DT mode and all methods had an NSCE
sudden drop by about 20dB as demonstrated in Fig. 4. In
spite of this, the proposed AEC and the time-domain DTD
[7] efficiently recovered back to good level of NSCE and
ERLE in less than 1.0 second while Park’s DTD performed
badly during DT stage. Fig. 5 illustrates that our method is
about 30dB ERLE better than the other two methods in the
beginning of DT mode. Figs. 4 and 5 clearly show that our
AEC has the best performance in tracking and convergence.

We conducted another experiment involving abrupt
echo path change: h, (n) was switched to -h,(») at

time 5.3. The DT phase is set from 11 to 14 seconds.
Simulation results are illustrated in Figs, 6-8. Fig. 6 shows
that Park’s scheme made several incorrect decisions to
declare DT mode and was dead there during 5.3 to 9.75
second. The damage was obvious: adaptive filter was
frozen in that period. Our method and the time-domain
DTD [7] performed similarly to that they behaved in the
first experiment. We believe the good properties of our
frequency-domain DTD and the time-domain DTD [7] are
due to the employment of two auxiliary filters.

opr

6. Conclusions

In this paper, we presented a new frequency-domain
DTD combined with the regularized GMDF algorithm. The
DTD comprises an NEVD indicator and two auxiliary
filters. The auxiliary filters are only to store estimated echo
path for later use. Simulation results demonstrated that our
DTD was capable of distinguishing echo path changes from
double-talk situation, and outperformed other competitive
algorithms. We also made a comparison study of these
algorithms in computational complexity. It was obvious that
our scheme prevailed in this category as well.

References

{11 P. Ahgren and A. Jakobsson, “A study of doubletalk
detection performance in the presence of acoustic echo
path changes,” Proceedings of 2005 IEEE ICASSP,
Vol. ITI, pp. 141-144, 2005.

[2] J. Benesty and T. Gansler, “A multidelay double-talk
detector combined with the MDF adaptive filter,”
EURASIP Journal on Applied Signal Processing, pp.
1056-1063, 2003.

[3] I Benesty, D. R. Morgan, and J. H. Cho, “A new class
of doubletalk detectors based on cross-correlation.”
IEEE Transactions on Speech and Audio Processing,
Vol. 8, No. 2, pp. 168-172, Mar. 2000.

[4] 1. C. Jeng and S. F. Hsieh, “Decision of double-talk
and time-variant echo path for acoustic echo
cancellation,” IEEE Signal Processing Letters, Vol. 10,
No. 11, pp. 317-319, Nav. 2003.

[5] . Lee and H. C. Huang, “A New Frequency-domain
Regularization for the GMDF  Algorithm,”
proceedings of IMECS, pp 1495-1498, Mar. 19-21,
2008.

[6] J. Lee and H. C. Huang, “On the Fixed Common
Step-Size of the Frequency-Domain Normnalized
Generalized Multidelay Adaptive Filter,” TAENG
International Journal of Computer Science, Vol. 33,
Issue 1, pp 140-144, Mar. 2008.

[7] I. Lee and H. C. Huang, “A robust double-talk
detector for acoustic echo cancellation,” proceedings
of IMECS 2010, pp 1239-1242, Mar, 2010,

[8] S. I. Park, C. G. Cho, C. Lee, and D. H. Youn,
“Integrated echo and noise canceler for hands-free
applications,” TEEE Transactions on Circuits and
Systems II, Vol. 49, Issue 3, pp. 186-195, March 2002,

[39] H. Ye and B. X. Wu, “A new double-talk detection
algorithm based on the orthogonality theorem,” IEEE
Transactions on Communications, Vol. 39, pp.
1542-1545, Nov. 1991.

2745




Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010

1| " " microphone speech l ]
0
Nz 4 6 & 10 1z 14 6
sDT= 1 ’ ' ' | :
I (a)
e mmy ey SDY- 0 m y - » . L
Sand Path s 10 2 “t 6 [ 10 1.2 14 16
sthy+ v[k)® i NP I or” L
vk .k | > {b)
it 1——— (k) Spr=0 . y . . . .
+ 0 2 4 [ [ 10 12 14 16
Double Taik s =1 - T T T T 7
o i oT
N — I:‘;‘:;%(E':: g L © |_~echo-path change Ydouble-talk J
¢ i Adaptive olce B Spr=0 , . . . .
Fitar | Hik <:> Dotoetar T z 4 G 8 10 12 14 16
Auxlliary Time (Sec)
Filtar . ..
Fig. 3, DTD decision results of (a) Park’s method, (b)
time-domain DTD [7], and (c¢) our proposed method.
b Recsive Path x(k)
|

n

Fig. I, Basic structure of acoustic echo cancellation
with double-talk detection.
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Fig. 4, NSCE curves of (a) Park’s method, (b) time-domain
DTD [7], and {¢) our proposed method.
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Fig. 5, ERLE curves of (a) Park’s method, (b) time-domain
DTD [71, and (c) our proposed method.
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time-domain DTD [7], and {c) our proposed method.
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DTD [7], and (c) our proposed method.



