

A n A nt Colo n y O pti1l1i zatio n A lgo1'ith1l1 f o 1' Q u a d 1'a tic Ass ign1l1e nt P rob le m

KUIl -Chih 、.vut1 . Ching-Jung Ting2 and Lionel Francisco Casanova Gonzalez 3

Depart l1lent of lnd恥tlial Engineering and M削lagemellt. Yuan Ze University
135 Yuall Tllll2: Road. Clul1旭-Li. Taiwall 32003
tConespo吋mg叫hor: s96~ 間 7@mail. yzu.edu . tw 1

ietingcj@samm.yzu. edu. n，~
59ï 5449@mai1.yzu.edu.tw'

Abst l'act - The Quadratic Assigumenr Problem (QAP) is a
well -kllowll and important NP-hard Problelll. Mally
oprimization problems are relared TO QAP. slIch as fac ilities
layour problem. aitport gate assignmem problem. and
backboard wirin容 problelll. The QAP considers assigning N
faciliries to N locations. where the cost fUllctioll is composed
by rhe Illultiplicariolls of the distance between two loca riolls
and flow between two components . The objective is to fÍl吋
rhe 1血llilllUlll [Owl COSL In th.i.s paper 、ve develop an i句lt

Colony Optilllization (ACO) to solve the problelll. in 、vhich

a specific hemistic infonnation and local search are both
well developed. To test the efficiency m吋 effectiveness of
our ACO. we 11m the ACO 011 the benchlllark instances for
facilities location problelll 曲tained 宜。III the QAPLIB web
site. The experiment reslllts show that our ACO can achieve
rhe cOlllpering results on rhe benchlllark instances

K叮words : Quadratic Assigl.llllem Problelll. Ant Colony
Oprilllization. Heuristics

1. INTRODUCTION

The quadratic a品ignlllent problelll (QAP) is an
extension frolll rhe linear assignlllent problelll (AP). which
was first introduced by Kooplllans m吋 Becklllann (1 957)
frolll rhe viewpoint of the econolllic ac tivities. The QAP is
considered as assigning N facilities to N locations with given
flow of Illaterials berween facilities and distances berween
locations . The objective is to m..inimize rhe total
nmltiplication of flows m吋 distances alllong facilities and
locations. respectively. Both AP and QAP are well-known
oprilllization proble lll. The only difference between these
rwo problellls is in rheir objective functions: rhe fonner one
can silllply be dealt with by polYllolllial tillle Illethod bm the
laner one is an NP-hard problelll. Moreover. rhe QAP is
regarded as one of the Illost di fficult NP-hardωIllbinatorial

problellls (Adallls et a1.. 2007: Loiola er a1.. 2007). In tenns
of rhe objective func tion. QAP concems nO[only relations
between a facili可 and a location. but also imeractions alllong
facilities and locations

To delllonstra re the quadratic assigulllent problelll. two
rypes of input parameters are considered: assignlllent cost
CijkJ and allocation cost b ij . Ler hk be the flow berween
facilities i and k. and 1的 。 be tl時 d叫ances between
locations j and 1. The cost c 1jkJ can be regarded as the

Proceedim!s of 12th Asia Paciflc Industria1 En2ineenn il: and Mana2ement
Systems CαIference. Beijing. China. October 14.16. 2011. pp. 138-144

multiplications of flows and distances (加 ~j州，). 01' it can
be any incUlwd cost while facilities i m吋 k are assigned to
locatio llS j and 1 respectively. The binmy variable .'fij is the
only decision vmiable involved in the Illodel. and it is
defined as

11 if ftcili ti自 F 的品也gn吋 to the 1目:atlOll j
.'f,, = <

10 othet、.vlse

The quadratic assiglllllenr problelll can be then generally
f叫lllulated as a quadratic programlllin學Illodel

"" " M M
ι1

寸
』M

ZH Z
H Y

』H

+
U V

A U
b i

=
:
JO

Z

叫
圳

岫

岫
" 主 .'fjj =1 l 至j 至 n (2)
;=1
n

2:: '\ 1 =1 l 至 1 至 n (3)
j =1

.'(ijε {O. l } (4)

Since the first paper 品l' QAP (Koopmans m吋

Becklllmm. 1957) has been published. Illany papers 品r QAP

have been proposed due to its practical and theoretical
significance. The QAP is a fundamental cOlllbinatoria1
problem relared to vmious prac rica1 applications. The vast
literamre penaining to QAP has comributed to imponam
developlllems recently. such as rhe airpon gate assignlllent
problem (Haghani a l吋 Chen. 1998). rhe backboard wiring
problem (Steinbe唔 1 96 1) . rhe website stl1lctme pr吐)lelll

(Qahri Sa阻llli er aL 2008). rhe keyboard layout problem
(Dell'Alllico et al.. 2的9)‘ and the IllOSt poplllar applications
on the facilities layout problelll. Also. several theoretical
problems are also relared to QAP directly. for example the
quadratic 3 -dilllens iOl泊1 assignmem problelll. rhe biquadratic
assignment problelll. and the lllultiobjective QAP.
Furtherlllore. some cOlllbina rOlial problell泊 can be
f<mnlllated as OAP. [or exalllo!e rhe trave1in宣 sa!esman

、且 L

problem (Parda los er a1.. 1994). the bin-packing problelll and
the Illax c1ique proble1ll. More discussions can be found in
the slllv ey provided by Loiola et al. (2007)

SOllle developlllems of rhe Illethods to solve QAP are
based on rhe exact solution lllethods. Several exact Illerhods
were applied to solve QAP. [or example. Blixills and
Anstreicher (200 1) proposed a branch-and-bound algOli rhlll
to solve tillle-constrained rraveling saleslllan problelll. In
their branch-and-bound. the quadratic lower bound is applied
and different branching srrategies are tesred to solve rhe

An Ant Colony Optimization Algorithm for Quadratic Assignment Problem 139

problem. Their results shown that the maximum problem

size of 30 can be solved by the branch-and-bound. Erdoğan

and Tansel (2007) applied a branch-and-cut algorithm with a

flow-based linearization technique, and their method can

solve the problem size up to 25.

Because the QAP is a NP-Hard problem and very

difficult to achieve optimality by exact method. In practice,

the only feasible way to solve QAP instances with large sizes

is to apply heuristic algorithms which can find high quality

solutions in reasonable computation times. The solving

methods that are most adapted recently to optimization

problems are meta-heuristics. The meta-heuristics is a high-

level search procedure with guiding other heuristics to

search for good solution in feasible domains, and to be able

to avoid trapping in local optima. Meta-heuristics have been

most generally applied to problems with computational

complexity of NP-Hard or NP-Complete. With the growth of

meta-heuristics, QAP research has attracted much attention.

Several such algorithms have been proposed as shown in

Table 1, including simulated annealing (SA), tabu search

(TS), Genetic algorithm (GA), greedy randomized adaptive

search procedure (GRASP), and scatter search.

The remainder of this paper is organized as follows. In

section 2, we describe the proposed ant colony system (ACO)

and its implementation steps. Section 3 gives numerical

results of tested benchmark instances. Then the conclusions

are drawn in section 4.

Table 1 Heuristic Algorithms applied to QAP

Heuristic Algorithms Scholars Year

Simulated Annealing

(SA)

Arostegui Jr. et al.

Chwif et al.

2006

1998

Tabu Search (TS) James et al.

Mckendall Jr.

Mckendall Jr. and

Jaramillo

2009

2008

2006

Genetic Algorithm

(GA)

Misevicius

Ahuja et al.

Tate and Smith

2004

2000

1995

Greedy randomized

adaptive search

procedure (GRASP)

Oliveira et al.

Aiex et al.

Mavridou et al.

2004

2002

1998

Scatter Search Adenso-Diaz et al.

Greistorfer

2006

2003

2. ANT COLONY SYSTEM FOR THE QAP

The following list and explanation of the symbols are

used in our Ant Colony Optimization (ACO) for the

Quadratic Assignment Problem algorithm.

n Population size

q0 State transition control parameter

Pij The probability of assigning facility i to site j

Q Pheromone persistence parameter

U The set of the available locations/sites

α Relative importance of pheromone trail

β Relative importance of local heuristic

ηij The local heuristic of combination (facility i ,site j)

ρ Pheromone persistence constant

τ0 Initial pheromone intensity

τij The pheromone intensity of assigning facility i to site j

Our Ant Colony System (ACS) algorithm for the

Quadratic Assignment Problem stems from the ACS

algorithm proposed by Gambardella and Dorigo (1997).

There are a number of different ACO variants related to the

ant colony system. In the classical ACS, an ant will have

initially an empty assignment solution and a list of candidate

facilities for selection to be put into the specified locations.

Then randomly it will assign a facility to a location

according to the amount of pheromone on the edge between

facilities and sites at the first running time. For successive

running times, the ant will progressively select a facility

from the candidate list based on the pheromone calculating

mechanisms and put it into random locations until

completing the solution, i.e. all facilities are assigned to

corresponding gates. After assigning the amount of

pheromone on the edge, an ant updates the pheromone value

locally and globally until reaching the stopping criteria.

Moreover, the calculating mechanisms of the “specific

heuristic (η)”, “Offline updating pheromone rule”, Online

updating pheromone rule are modified and a “local search

(swap)” is applied on the best ant. In this regard, our ACS

essentially consists of the following iteration including three

main steps:

 Each ant constructs the solution via the state transition

rule and updates the pheromone information immediately

based on each constructed solution.

 An update of the global pheromone information is done

according to the iteration-best solution, i.e. the best

solution found in the current iteration.

 A local search is applied to improve the iteration-best

solution.

The explanation of the flow chart of our ACO to solve QAP

is shown in Figure 1.

2.1 Route Construction

In our ACS, prior to performing the state transition rule,

the specific heuristic (η) should be discussed for it will be

used in the state transition rule. For this experiment,

distances defined as Manhattan distances (symmetrical) are

used. A flow matrix which is also symmetrical between

facilities i and sites j are also used as initial data. However,

the ηij is taken as the savings of combining two nodes i and j

on route as contrary to supplying them on two different

routes. The ηij is calculated using the following:

ηij =
ijd

1
 (5)

where dij represents the distance between nodes i and j.

140 Kun-Chih Wu, Ching-Jung Ting and Lionel Francisco Casanova Gonzalez

The state transition rule is the key point in running the

algorithm, which is a deduction engine in selecting the

facilities and putting it into a specified location. To

guarantee the speed of finding the best way (convergence),

once at a decision point, the ants make their choices based

on the pheromone on the assignments and cost of the

selective assignments. It is clear that if more ants select the

specific allocation, the more pheromone is dropped and this

allocation becomes the shortest one. To take advantage

completely of the guiding information and to avoid early

convergence of finding an assignment, two selection

methods are applied. There are two different ways to use the

mechanisms in the state transition rule which are divided by

a random probability q. One way will occur if the q  q0 and

the other will do likewise if the q > q0 where the q0 is pre-

determined during the parameters initialization. When q  q0,

each facility will be selected based on the following equation:

Figure 1 Flow chart for the ACO program for QAP

    ijij
Uj

max (6)

This formula brings forth a very important component to the

ACO. In this case, (i, j) represents an edge between point i

and j, and τij stands for the pheromone on edge (i, j). ηij is the

desirability of edge (i, j). q0 is a user-defined parameter with

(0 ≤ q0 ≤ 1), β is the parameter controlling the relative

importance of the desirability. U is the set of sites available

for facilities i.

Moreover when q > q0 each facility will be selected

based on a probability calculating mechanism. This selection

mechanism acts similar to the “Roulette Wheel Selection”

function. The probability to assign the facility i to the

location j is given below:

Probi,j =
  
  

Uv
iviv

ijij








 (7)

where U is the set of locations. The “roulette wheel” is

known as a selection strategy since its mechanism is a

simulation of the function of a roulette wheel. Every location

has its percentage in the roulette wheel and the bigger this

percentage is, the larger the width of slot in the wheel, so the

probability of that location also becomes larger.

2.2 Pheromone Updating Rule

The pheromone updating of ACS comprises of the

global and local pheromone updating rule. A certain amount

of pheromone is deposited when an ant goes by. This can be

classified as a continuous process, but it can be regarded as a

discrete release by two rules which are the local updating

pheromone rule and global updating pheromone rule. The

former occurs while the ant is constructing its path, because

it modifies the amount of pheromone on the used edges by

applying this rule. This simply means that the ant applies this

rule that encourages the generation of different solutions to

those yet found; that is, it improves the ants’ solutions before

updating the pheromone trails. This rule also implies that

ants don’t follow the same path travelled whereby a quick

convergence to the solution may occur. Early convergence

happens when too many ants gather in a wrong path and the

pheromone becomes so dense that a better route cannot be

discovered. The local update rule can be formulated as (8).

τij
new

 = ρ * τij
old

 + (1 - ρ) * Δτij (8)

Furthermore, in ACS only the iteration-best ant is

permitted to add pheromone after each iteration. The global

updating pheromone rule is crucial to guarantee better results.

The global pheromone value also referred to as the offline

pheromone update is responsible to update the pheromone at

the end of the construction process. This offline update is

performed only by the best ant; that is, only edges that were

visited by the best ant are updated. The offline update rule

shows that the feasibility solution has no solution. The

Initialization

 Set Parameters and Stopping Criteria

Generate Solution xi for ant i

by transition rule

Local Pheromone Update

whenever an ant makes a move

Find the best ant with minimum

objective value (xbest)

Global pheromone update by xbest'.

Update the best solution so far.

 Every ant generates a solution

 Stopping Criteria reached?

END

NO

YES

YES

NO

i = i + 1

Perform the local search for xbest

and obtain local optimum xbest'

An Ant Colony Optimization Algorithm for Quadratic Assignment Problem 141

pheromone value is updated globally after all the ants have

completed the gates assignment task and local search. The

global pheromone updating rule is calculated based on the

equation (9).

τij
new

 = ρ * τij
old

 + (1 - ρ) * Δτij (9)

where

Δτij = 1/f(xbest') (10)

2.3 Local Search

The mechanism of the local search designed in our

ACO is that in the neighborhood of a permutation of feasible

solutions is obtained by swapping two facilities’ locations.

What actually occurs is that it randomly selects two facilities

from all facilities, and makes the interchange of their

positions. The purpose of the local search is to guarantee an

efficient way to improve solutions. That is, if in the

neighborhood of the current assignment f(xbest) a better

assignment is found f(xbest'), it replaces the current

assignment and the local search is continued from f(xbest') as

shown in Figure 1. This mechanism is also vital in the

overall performance of the ACO.

3. NUMERICAL RESULTS

In order to test our ACO algorithm for the Quadratic

Assignment Problem, we test its solution quality, robustness,

and computational time in different instances. In this section

we will acquire insights into better understanding the

characteristics of our heuristic approach. By running the

heuristic across Nugent et al. (1968) and Palubeckis’ (2000)

test problems of various sizes and characteristics, it may be

able to show how well our heuristic performs for the QAP.

These test problems are also used as benchmarks to test our

QAP. Nugent’s et al. (1968) problem instances are probably

the most used according to the QAPLIB. Palubeckis’ (2000)

test problems are a new set of QAP instances containing

provably optimal values of the objective function which will

be discussed further.

3.1 QAP instances

Our proposed ACO for the Quadratic Assignment

Problem is coded in Visual C++ 6.0, and run on a personal

computer with an AMD Athlon (TM) XP 3800+ (2.20 GHz)

CPU and 512 MB RAM, under Windows XP Operating

system.

For the QAP we took Nugent et al. (1968) test problems

as one of two sets of benchmarks to compare our results

obtained from our ACO algorithm. The set of problem

instances contains size of 5, 6, 7, 8, 12, 15, 20, and 30

facilities. We used Nugent’s instances sizes of 12, 15, 17,

16a, 16b, 17, 18, 20, 21, 22, 24, 25, 27, 28 and 30 found in

the QAPLIB. It is known that these problems possess

distance matrices stemmed from n1×n2 grid (a generalized

quadrangle) and their distances are defined as Manhattan

distances between grid points, and multiple global optima is

involved in those QAP instances. Another characteristic is

that these globally optimal solutions are at the maximum

possible distances from other solutions. It is important to

note that the solution values for the Nugent’s instances were

re-found several times, and it is a continuous task to achieve

unique results.

Furthermore, we adopted problem provided by

Palubeckis (2000) to test our ACO algorithm for larger

instances. These QAP instances which can also be found in

the QAPLIB (http://www.opt.math.tu-graz.ac.at/qaplib/) are

very difficult to solve due to the algorithm used to generate

these instances. Palubeckis (2000) explained that the

algorithm differed from similar existing generators in that

the sizes of the graphs are larger, i.e. affecting the

construction of the flow matrix; meaning up to the problem

size. Similar to Nugent’s problem instances, these QAP

instances are also of rectilinear version. To test the

robustness of our ACO algorithm, we used Palubeckis’

problem sizes of 20, 30, 40, 50, 60, 70, 80, and 100. The

results will be discussed in later sections.

3.2 Parameter Sensitivity Analysis

In order to obtain valid and accurate results in our ACO

algorithm we tested different parameters to solve the

assignment of facilities to sites. We used Nugent et al.’s

problem instances 14, 16a, 17, 20, 22, 24, 25, 28 and 30 to

find the best parameters. The default value for each

parameter is set as β = 2, ρ = 0.2, q0 = 0.5, b = 10. The

number of iterations (N) set as default was the problem size

(n) tested. When one parameter is tested, the others are set as

their default values in the experiment. These values tested

are β{1, 2, 3, 4, 5}, ρ{0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},

q0 {0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9}, b{5, 10, 15, n), and

N{n/2, n/3, n/5, n}. The average percentage deviations

(GAP %) and computational time in seconds over 20 runs

are summarized in the tables below. The number of iterations

chosen was in accordance to the problem size. In light of this

analysis we achieved the following measures of performance

in our ACO algorithm:

 Solution quality which measures the lowest value of the

objective function (least cost) as an important factor

considered in our results.

 Robustness is known as the ability of a heuristic to perform

well over a wide range of test problems and is usually

captured through measures of variability. We must

understand the importance that whenever a heuristic is not

consistent, meaning that it gives the best solution in one (or

very few instances), but performs very poorly in most

other instances is not considered effective.

 Speed of execution is taken as the computational time

which is a measurement to study the trade-off between

quality of solution and time required to run a case.

In this sense, we have seen that the average percentage

142 Kun-Chih Wu, Ching-Jung Ting and Lionel Francisco Casanova Gonzalez

deviations not only depict the performance of the algorithm,

but also show the robustness in the same context. For our

analysis, we used average percentage deviations; however,

the least cost (optimal solution) is adopted in the final

solution.

Table 2 portrays the performance of parameter b on the

solution quality. We observe that b = 15 provides the best

results by the average percentage deviations (Gap %) over

the best known solutions (Nugent’s benchmarks). Hence, we

can observe the consistency of our ACO algorithm provided

that it gives best solution on every problem instance tested.

Table 2 Average Gap and CPU time for different b

Problem
b

5 10 15 n

14 0.50 0.48 0.72 0.67

16a 0.58 0.68 0.57 0.63

17 0.57 0.59 0.33 0.49

20 0.56 0.60 0.46 0.50

22 0.28 0.22 0.29 0.30

24 2.91 0.80 0.72 0.89

25 0.22 0.27 0.20 0.20

28 0.92 0.86 0.99 1.08

30 0.69 0.66 0.85 0.78

Avg. Gap (%) 0.80 0.57 0.57 0.62

Avg. Time (sec) 4.61 4.26 4.20 4.10

Table 3 shows the relative effect of pheromone on

distance savings in our ACO algorithm. The impact of

parameter β on the solution quality also shows the

effectiveness and consistency to obtain optimal solutions

ornear optimal solutions as compared with the benchmarks

used. The best average percentage deviations is obtained

with value β = 3.

Table 3 Average Gap and CPU time for different β

Problem
β

1 2 3 4 5

14 1.01 0.48 0.60 0.98 0.74

16a 0.63 0.68 0.54 0.65 0.55

17 0.48 0.59 0.42 0.46 0.67

20 0.55 0.60 0.40 0.50 0.49

22 0.16 0.22 0.32 0.34 0.24

24 0.70 0.80 0.68 0.90 0.86

25 0.27 0.27 0.25 0.22 0.21

28 0.89 0.86 1.06 1.45 1.39

30 0.74 0.66 0.70 0.59 0.74

Avg. Gap (%) 0.60 0.57 0.55 0.67 0.65

Avg. Time (sec) 4.13 4.26 4.75 4.61 4.96

Table 4 portrays the impact of parameter ρ on the

solution quality. Once more the results of the deposited

pheromone discounted by a factor ρ provide us with clear

evidence that our ACO algorithm is consistent. The results

are optimal values or near optimal values as compared with

the benchmark used. The best average percentage deviations

is obtained with value ρ = 0.1.

Table 4 Average Gap and CPU time for different ρ

Problem
ρ

0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

14 0.45 0.48 0.92 1.12 1.12 0.80 1.23 1.16

16a 0.60 0.68 0.52 0.71 0.53 0.75 0.78 0.83

17 0.61 0.59 0.44 0.40 0.47 0.70 0.81 0.54

20 0.58 0.60 0.43 0.58 0.54 0.30 0.52 0.75

22 0.25 0.22 0.40 0.24 0.38 0.42 0.46 0.66

24 0.66 0.80 0.69 0.61 0.83 0.72 0.83 0.93

25 0.34 0.27 0.19 0.19 0.17 0.16 0.11 0.21

28 0.82 0.86 1.11 1.00 1.03 1.15 1.36 1.44

30 0.62 0.66 0.72 0.70 0.55 0.41 0.34 0.54

Avg. Gap 0.55 0.57 0.60 0.62 0.62 0.60 0.72 0.78

Avg. Time 3.68 4.26 4.11 3.49 3.63 3.78 3.60 3.86

Table 5 shows the impact of parameter q0 on the

solution quality. The nature of the parameter q0 determines

the relative importance of exploitation versus exploration.

With a high value of q0 we can observe that our ACO

algorithm is consistent for the results are optimal values or

near optimal values as compared with the benchmark used.

The better solutions are found when q0 = 0.5 giving clear

evidence that our ACO algorithm is consistent for the results

are optimal values or near optimal values as compared with

the benchmark used.

Table 5 Average Gap and CPU time for different q0

Problem
q0

0.1 0.2 0.4 0.5 0.6 0.8 0.9

14 0.85 0.86 0.63 0.48 1.09 1.19 1.77

16a 0.50 0.76 0.62 0.68 0.91 1.03 1.34

17 0.38 0.49 0.41 0.59 0.47 1.03 1.13

20 0.65 0.68 0.65 0.60 0.70 0.76 1.07

22 0.21 0.17 0.26 0.22 0.22 0.64 0.60

24 0.78 0.80 0.63 0.80 0.70 0.91 1.08

25 0.24 0.29 0.23 0.27 0.27 0.40 0.51

28 0.85 0.75 1.07 0.86 1.03 0.93 1.47

30 0.80 0.62 0.69 0.66 0.60 0.61 0.71

Avg. Gap 0.58 0.60 0.58 0.57 0.67 0.83 1.07

Avg. Time 5.67 5.67 6.55 4.26 4.88 5.38 2.94

As a result based on the parameter sensitivity analysis

made, the parameters selected for our ACO algorithm in the

experiment are: b = 15, β = 3, ρ = 0.1, q0 = 0.5. The number

of iterations (N) used for each run is set as for each problem

size tested as shown in Table 6. Consequently, after

performing 20 runs, the least costs (optimal values) are

obtained and reported.

An Ant Colony Optimization Algorithm for Quadratic Assignment Problem 143

Table 6 Average Gap and CPU time for different iterations

Problem
iterations

n/2 n/3 n/5 n

14 0.98 1.39 2.08 0.48

16a 0.94 1.47 1.89 0.68

17 0.85 1.01 1.25 0.59

20 1.11 1.37 0.60 0.60

22 0.58 0.78 1.02 0.22

24 1.16 1.36 1.92 0.80

25 0.42 0.56 0.71 0.27

28 1.15 1.34 1.65 0.86

30 0.81 0.93 1.09 0.66

Avg. Gap (%) 0.89 1.13 1.36 0.57

Avg. Time (sec) 2.32 1.81 1.07 4.26

3.3 The result of Ant Colony System for the QAP

To test our Ant Colony Optimization algorithm for the

Quadratic Assignment Problem, we tested our ACO on the

benchmark problems of Nugent et al. (1968) and Palubeckis

(2000). In many researches, these instances are applied to

test their algorithms for efficiency and effectiveness. These

problems can be downloaded from the website of QAPLIB.

In our case we used Nugent et al.’s instances from 12 to

30 locations. Also, we run Palubeckis’ problem instances of

20, 30, 40, 50, 60, 70, 80, and 100 which are considered to

be large instances and very difficult to solve. We compared

the results obtained by a multi-start descent (MSD)

algorithm by Palubeckis. These problems are never solved to

optimality. We found that very high quality solutions in short

computation time can be achieved when applying ACO

algorithm to solve Nugent’s QAP instances. Tables 7 and 8

show the results obtained from our ACO program. Table 9

provides a comparison of our ACO for the Quadratic

Assignment Problem with Multi-Start Descent heuristic for

the Palubeckis’ large problem instances.

4. CONCLUSION

In this research, we developed an ACO algorithm to

solve the Quadratic Assignment Problem. An Ant Colony

Optimization algorithm is known to be one of the most

effective heuristic approaches in present day. ACO is an

approximate algorithm used to obtain good enough solutions

to hard combinatorial optimization problems in a reasonable

amount of computational time. When compared to some of

the best heuristics for the QAP, ACO is among one of the

best as far as real world, irregular, and structured problems

are concerned.

The QAP literature dwells in the fact that such a

problem is generally recognized as a very difficult

combinatorial optimization problem. To solve the QAP only

heuristic algorithms have the capacity to meet such a

demand. It is known that exact algorithms can only solve in

a reasonable amount of time only small instances of the QAP;

that is, with the number of objects less than 30.

Table 7 QAP-ACO results for Nugent's Instances

Prob. BKS
Best

Values

Min

GAP

Max

GAP

Avg.

GAP

Best

No*

Time

(sec)

Nug12 578 578 0.00 2.08 1.28 1 0.04

Nug14 1014 1014 0.00 2.76 0.96 1 0.10

Nug15 1150 1150 0.00 1.39 0.68 1 0.13

Nug16a 1610 1610 0.00 1.24 0.38 8 0.21

Nug16b 1240 1240 0.00 1.94 0.53 14 0.19

Nug17 1732 1732 0.00 1.04 0.54 1 0.28

Nug18 1930 1930 0.00 1.76 0.97 3 0.43

Nug20 2570 2570 0.00 1.56 0.61 4 0.92

Nug21 2438 2442 0.16 1.23 0.44 0 1.31

Nug22 3596 3596 0.00 1.00 0.46 1 2.30

Nug24 3488 3488 0.00 1.55 0.82 2 3.00

Nug25 3744 3748 0.11 0.53 0.23 0 3.61

Nug27 5234 5234 0.00 2.14 0.78 3 7.80

Nug28 5166 5172 0.12 1.97 1.17 0 9.21

Nug30 6124 6124 0.00 1.37 0.65 2 11.43

Avg. 2774 2775 0.03 1.57 0.70 2.73 2.73
*represents number of times optimal solutions are obtained.

Table 8 QAP-ACO results for Palubeckis’ Instances

Prob. BKS
Best

Values

Min

GAP

Max

GAP

Avg.

GAP

Time

(sec)

Palu20 81536 81817 0.25 0.46 0.34 1.16
Palu30 271092 272654 0.52 0.63 0.58 10.28
Palu40 837900 840930 0.34 0.39 0.36 62.48
Palu50 1840356 1847422 0.36 0.41 0.38 226.43
Palu60 2967464 2978898 0.37 0.40 0.39 605.83
Palu70 5815290 5832460 0.28 0.31 0.30 1464.32
Palu80 6597966 6618736 0.31 0.32 0.31 3042.79
Palu100 15008994 15048806 0.26 0.27 0.27 6062.05
Avg. 4177575 4190215 0.34 0.40 0.37 1434.42

This study has used the special library called QAPLIB,

and has been taken as benchmarks to test the effectiveness

and robustness of our ACO algorithm. The standard test

problems used were of instances from Nugent et al. (1968)

and Palubeckis (2000). The ACO proved to solve both set of

test problems to near optimal solutions or optimal solutions.

Nugent’s problem sizes were solved to optimality. However,

we learnt that indeed large problems instances cannot be

solved to optimality as described in the QAP literature.

Table 9 MSD Algorithm vs. Our ACO

Problem MSD Our ACO Gap (%)

Palu20 81536 81817 0.34

Palu30 272080 272654 0.21

Palu40 840308 840930 0.07

Palu50 1846876 1847422 0.03

Palu60 2978216 2978898 0.02

Palu70 5831954 5832460 0.01

Palu80 6618290 6618736 0.01

Palu100 15047406 15048806 0.01

Avg. 4189583 4190215 0.02

144 Kun-Chih Wu, Ching-Jung Ting and Lionel Francisco Casanova Gonzalez

REFERENCES

[1] Adams, W.P., Guignard, M., Hahn, P. and Hightower, W.L. (2007) A

level-2 reformulation-linearization technique bound for the quadratic

assignment problem, European Journal of Operational Research,
180, 983-996.

[2] Adenso-Diaz, B., García-Carbajal, S. and Lozano, S. (2006) An

Empirical Investigation on Parallelization Strategies for Scatter
Search, European Journal of Operational Research, 169, 490-507.

[3] Ahuja, R.K., Orlin, J.B. and Tiwari, A. (2000) A greedy genetic

algorithm for the quadratic assignment problem, Computers &
Operations Research, 27, 917-934.

[4] Aiex, R.M., Resende, M.G.C. and Ribeiro, C.C. (2002) Probability

distribution of solution time in GRASP: An experimental
investigation, Journal of Heuristics, 8, 343-373.

[5] Arostegui Jr., M.A., Kadipasaoglu, S.N. and Khumawala, B.M. (2006)

An empirical comparison of tabu search, simulated annealing and
genetic algorithms for facilities location problems, International

Journal of Production Economics, 103, 742-754.

[6] Brixius, N.W., Anstreicher, K.M. (2001) Solving quadratic
assignment problems using convex quadratic programming

relaxations. Optimization Methods and Software, 16, 49-68.

[7] Chwif, L., Marcos, R., Barretto, P. and Moscato, L.A. (1998) A
Solution to the facility layout problem using simulated annealing,

Computers in Industry, 36, 125-132.

[8] Dell'Amico, M., Díaz, J.C.D., Iori, M., Montanari, R. (2009) The
single-finger keyboard layout problem, Computers & Operations

Research, 36, 3002-3012.

[9] Erdoğan, G. and Tansel, B. (2007) A branch-and-cut algorithm for
quadratic assignment problems based on linearization, Computers &

Operations Research, 34, 1085-1106.

[10] Gambardella, L.M. and Dorigo, M. (1996) Solving Symmetric and
Asymmetric TSPs by Ant Colonies, Proceedings of IEEE Conference

on Evolutionary Computation, 622-627.

[11] Greistorfer, P. (2003) A tabu scatter search metaheuristic for the arc
routing problem, Computers & Industrial Engineering, 44, 249-266.

[12] Haghani, A., Chen, M.C. (1998) Optimizing gate assignments at

airport terminals, Transportation Research Part A: Policy and
Practice, 32, 437-454.

[13] James, T., Rego, C. and Glover, F. (2009) A cooperative parallel tabu

search algorithm for the quadratic assignment problem, European
Journal of Operational Research, 195, 810-826.

[14] Koopmans, T.C. and Beckmann, M.J. (1957) Assignment problems

and the location of economic activities. Econometrica, 25, 53-76.
[15] Loiola, E.M., Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P. and

Querido, T. (2007) A Survey for the Quadratic Assignment Problem,

European Journal of Operational Research, 176, 657-690.
[16] Mavridou, T., Pardalos, P.M., Pitsoulis, L.S. and Resende M.G.C.

(1998) A GRASP for the biquadratic assignment problem, European

Journal of Operational Research, 105, 613-621.
[17] Mckendall Jr., A.R. and Jaramillo J.R. (2006) A tabu search heuristic

for the dynamic space allocation problem, Computers & Operations
Research, 33, 768-789.

[18] Mckendall Jr., A.R. (2008) Improved tabu search heuristics for the

dynamic space allocation problem, Computers & Operations
Research, 35, 3347-3359.

[19] Misevicius, A. (2004) An improved hybrid genetic algorithm: New

results for the quadratic assignment problem, Knowledge-Based

Systems, 17, 65-73.
[20] Nugent, C.E., Vollmann, T.E., Ruml, J. (1968). An experimental

comparison of techniques for the assignment of facilities to locations.

Operations Research, 16, 150–173.
[21] Palubeckis, G. (2000) An Algorithm for Construction of Test Cases

for the Quadratic Assignment Problem, Informatica, 11, 281-296.

[22] Pardalos, P.M., Rendl, F. and Wolkowicz, H. (1994), The quadratic
assignment problem: a survey and recent developments. In P.M.

Pardalos and H. Wolkowicz (eds.), Quadratic assignment and related

problems, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Volume 16 (AMS), 1-42.

[23] Qahri Saremi, H., Abedin, B., Meimand Kermani, A. (2008) Website
structure improvement: Quadratic assignment problem approach and

ant colony meta-heuristic technique, Applied Mathematics and

Computation, 195, 285-298.
[24] Oliveira, C.A.S., Pardalos, P.M. and Resende, M.G.C. (2004)

GRASP with path-rethinking for the quadratic assignment problem,

Lecture Notes in Computer Science, 3059, 356-368.
[25] Steinberg, L. (1961) The backboard wiring problem: A placement

algorithm. SIAM Review, 3, 37-50.

[26] Tate, D.M. and Smith, A.E. (1995) A genetic approach to the
quadratic assignment problem, Computers & Operations Research,

22, 73-83.

AUTHOR BIOGRAPHIES

Kun Chih Wu is a Ph.D. student in Industrial Engineering and

Management Department at Yuan Ze University, Taiwan. He also received
his M.S. degree in Industrial Engineering and Management from the Yuan

Ze University.

His primary research interests include packing problem, logistics
management, and heuristic algorithms. His email address is

<s968907@mail.yzu.edu.tw>

Ching-Jung Ting is an associate professor in the Industrial Engineering

and Management Department at Yuan Ze University, Taiwan. He received

his B.B.A. from National Chiao Tung University, Taiwan, M.S. in Civil
Engineering from Northwestern University, and Ph.D. in Civil Engineering

from University of Maryland, College Park, respectively. His primary

research interests include supply chain management, logistics management,
metaheuristics, and transportation system analysis. His email address is

<ietingcj@saturn.yzu.edu.tw>

Lionel F. Gonzalez Casanova is an MBA student at the College of

Management/Yuan Ze University. He currently received his M.Sc. in

Industrial Engineering and Management at Yuan Ze University. His primary
research interests include the Gate Assignment Problem, Innovation

Management technology and heuristic algorithms. His email address is

<s997137@mail.yzu.edu.tw>

