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Abst l'act - The Quadratic Assigumenr Problem (QAP) is a 
well -kllowll and important NP-hard Problelll. Mally 
oprimization problems are relared TO QAP. slIch as fac ilities 
layour problem. aitport gate assignmem problem. and 
backboard wirin容 problelll. The QAP considers assigning N 
faciliries to N locations. where the cost fUllctioll is composed 
by rhe Illultiplicariolls of the distance between two loca riolls 
and flow between two components . The objective is to fÍl吋
rhe 1血llilllUlll [Owl COSL In th.i.s paper 、ve develop an i句lt

Colony Optilllization (ACO) to solve the problelll. in 、vhich

a specific hemistic infonnation and local search are both 
well developed. To test the efficiency m吋 effectiveness of 
our ACO. we 11m the ACO 011 the benchlllark instances for 
facilities location problelll 曲tained 宜。III the QAPLIB web 
site. The experiment reslllts show that our ACO can achieve 
rhe cOlllpering results on rhe benchlllark instances 

K叮words : Quadratic Assigl.llllem Problelll. Ant Colony 
Oprilllization. Heuristics 

1. INTRODUCTION 

The quadratic a品ignlllent problelll (QAP) is an 
extension frolll rhe linear assignlllent problelll (AP). which 
was first introduced by Kooplllans m吋 Becklllann (1 957) 
frolll rhe viewpoint of the econolllic ac tivities. The QAP is 
considered as assigning N facilities to N locations with given 
flow of Illaterials berween facilities and distances berween 
locations . The objective is to m..inimize rhe total 
nmltiplication of flows m吋 distances alllong facilities and 
locations. respectively. Both AP and QAP are well-known 
oprilllization proble lll. The only difference between these 
rwo problellls is in rheir objective functions: rhe fonner one 
can silllply be dealt with by polYllolllial tillle Illethod bm the 
laner one is an NP-hard problelll. Moreover. rhe QAP is 
regarded as one of the Illost di fficult NP-hardωIllbinatorial 

problellls (Adallls et a1.. 2007: Loiola er a1.. 2007). In tenns 
of rhe objective func tion. QAP concems nO[ only relations 
between a facili可 and a location. but also imeractions alllong 
facilities and locations 

To delllonstra re the quadratic assigulllent problelll. two 
rypes of input parameters are considered: assignlllent cost 
CijkJ and allocation cost b ij . Ler hk be the flow berween 
facilities i and k. and 1的 。 be tl時 d叫ances between 
locations j and 1. The cost c 1jkJ can be regarded as the 
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multiplications of flows and distances (加 ~j州，). 01' it can 
be any incUlwd cost while facilities i m吋 k are assigned to 
locatio llS j and 1 respectively. The binmy variable .'fij is the 
only decision vmiable involved in the Illodel. and it is 
defined as 

11 if ftcili ti自 F 的品也gn吋 to the 1目:atlOll j 
.'f,, = < 

10 othet、.vlse

The quadratic assiglllllenr problelll can be then generally 
f叫lllulated as a quadratic programlllin學Illodel
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Since the first paper 品l' QAP (Koopmans m吋

Becklllmm. 1957) has been published. Illany papers 品r QAP

have been proposed due to its practical and theoretical 
significance. The QAP is a fundamental cOlllbinatoria1 
problem relared to vmious prac rica1 applications. The vast 
literamre penaining to QAP has comributed to imponam 
developlllems recently. such as rhe airpon gate assignlllent 
problem (Haghani a l吋 Chen. 1998). rhe backboard wiring 
problem (Steinbe唔 1 96 1 ) . rhe website stl1lctme pr吐)lelll

(Qahri Sa阻llli er aL 2008). rhe keyboard layout problem 
(Dell'Alllico et al.. 2的9)‘ and the IllOSt poplllar applications 
on the facilities layout problelll. Also. several theoretical 
problems are also relared to QAP directly. for example the 
quadratic 3 -dilllens iOl泊1 assignmem problelll. rhe biquadratic 
assignment problelll. and the lllultiobjective QAP. 
Furtherlllore. some cOlllbina rOlial problell泊 can be 
f<mnlllated as OAP. [or exalllo!e rhe trave1in宣 sa!esman

、且 L

problem (Parda los er a1.. 1994). the bin-packing problelll and 
the Illax c1ique proble1ll. More discussions can be found in 
the slllv ey provided by Loiola et al. (2007) 

SOllle developlllems of rhe Illethods to solve QAP are 
based on rhe exact solution lllethods. Several exact Illerhods 
were applied to solve QAP. [or example. Blixills and 
Anstreicher (200 1) proposed a branch-and-bound algOli rhlll 
to solve tillle-constrained rraveling saleslllan problelll. In 
their branch-and-bound. the quadratic lower bound is applied 
and different branching srrategies are tesred to solve rhe 
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problem. Their results shown that the maximum problem 

size of 30 can be solved by the branch-and-bound. Erdoğan 

and Tansel (2007) applied a branch-and-cut algorithm with a 

flow-based linearization technique, and their method can 

solve the problem size up to 25. 

Because the QAP is a NP-Hard problem and very 

difficult to achieve optimality by exact method. In practice, 

the only feasible way to solve QAP instances with large sizes 

is to apply heuristic algorithms which can find high quality 

solutions in reasonable computation times. The solving 

methods that are most adapted recently to optimization 

problems are meta-heuristics. The meta-heuristics is a high-

level search procedure with guiding other heuristics to 

search for good solution in feasible domains, and to be able 

to avoid trapping in local optima. Meta-heuristics have been 

most generally applied to problems with computational 

complexity of NP-Hard or NP-Complete. With the growth of 

meta-heuristics, QAP research has attracted much attention. 

Several such algorithms have been proposed as shown in 

Table 1, including simulated annealing (SA), tabu search 

(TS), Genetic algorithm (GA), greedy randomized adaptive 

search procedure (GRASP), and scatter search. 

The remainder of this paper is organized as follows. In 

section 2, we describe the proposed ant colony system (ACO) 

and its implementation steps. Section 3 gives numerical 

results of tested benchmark instances. Then the conclusions 

are drawn in section 4. 

 

Table 1 Heuristic Algorithms applied to QAP 

Heuristic Algorithms Scholars Year 

Simulated Annealing 

(SA) 

Arostegui Jr. et al. 

Chwif et al. 

2006 

1998 

Tabu Search (TS) James et al. 

Mckendall Jr.  

Mckendall Jr. and 

Jaramillo 

2009 

2008 

2006 

Genetic Algorithm 

(GA) 

Misevicius 

Ahuja et al. 

Tate and Smith 

2004 

2000 

1995 

Greedy randomized 

adaptive search 

procedure (GRASP) 

Oliveira et al. 

Aiex et al. 

Mavridou et al. 

2004 

2002 

1998 

Scatter Search Adenso-Diaz et al. 

Greistorfer 

2006 

2003 

 

2. ANT COLONY SYSTEM FOR THE QAP 
 

The following list and explanation of the symbols are 

used in our Ant Colony Optimization (ACO) for the 

Quadratic Assignment Problem algorithm. 

 

n Population size 

q0 State transition control parameter 

Pij The probability of assigning facility i to site j 

Q Pheromone persistence parameter 

U The set of the available locations/sites 

α Relative importance of pheromone trail 

β Relative importance of local heuristic 

ηij The local heuristic of combination (facility i ,site j) 

ρ Pheromone persistence constant 

τ0 Initial pheromone intensity 

τij The pheromone intensity of assigning facility i to site j 

 

Our Ant Colony System (ACS) algorithm for the 

Quadratic Assignment Problem stems from the ACS 

algorithm proposed by Gambardella and Dorigo (1997). 

There are a number of different ACO variants related to the 

ant colony system. In the classical ACS, an ant will have 

initially an empty assignment solution and a list of candidate 

facilities for selection to be put into the specified locations. 

Then randomly it will assign a facility to a location 

according to the amount of pheromone on the edge between 

facilities and sites at the first running time. For successive 

running times, the ant will progressively select a facility 

from the candidate list based on the pheromone calculating 

mechanisms and put it into random locations until 

completing the solution, i.e. all facilities are assigned to 

corresponding gates. After assigning the amount of 

pheromone on the edge, an ant updates the pheromone value 

locally and globally until reaching the stopping criteria. 

Moreover, the calculating mechanisms of the “specific 

heuristic (η)”, “Offline updating pheromone rule”, Online 

updating pheromone rule are modified and a “local search 

(swap)” is applied on the best ant.  In this regard, our ACS 

essentially consists of the following iteration including three 

main steps: 

 Each ant constructs the solution via the state transition 

rule and updates the pheromone information immediately 

based on each constructed solution. 

 An update of the global pheromone information is done 

according to the iteration-best solution, i.e. the best 

solution found in the current iteration. 

 A local search is applied to improve the iteration-best 

solution. 

The explanation of the flow chart of our ACO to solve QAP 

is shown in Figure 1. 

 

2.1 Route Construction 
 

In our ACS, prior to performing the state transition rule, 

the specific heuristic (η) should be discussed for it will be 

used in the state transition rule. For this experiment, 

distances defined as Manhattan distances (symmetrical) are 

used. A flow matrix which is also symmetrical between 

facilities i and sites j are also used as initial data. However, 

the ηij is taken as the savings of combining two nodes i and j 

on route as contrary to supplying them on two different 

routes. The ηij is calculated using the following: 

ηij = 
ijd

1
 (5) 

where dij represents the distance between nodes i and j. 
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The state transition rule is the key point in running the 

algorithm, which is a deduction engine in selecting the 

facilities and putting it into a specified location. To 

guarantee the speed of finding the best way (convergence), 

once at a decision point, the ants make their choices based 

on the pheromone on the assignments and cost of the 

selective assignments. It is clear that if more ants select the 

specific allocation, the more pheromone is dropped and this 

allocation becomes the shortest one. To take advantage 

completely of the guiding information and to avoid early 

convergence of finding an assignment, two selection 

methods are applied. There are two different ways to use the 

mechanisms in the state transition rule which are divided by 

a random probability q. One way will occur if the q  q0 and 

the other will do likewise if the q > q0 where the q0 is pre-

determined during the parameters initialization. When q  q0, 

each facility will be selected based on the following equation: 

 

 
Figure 1 Flow chart for the ACO program for QAP 

 

    ijij
Uj

max  (6) 

This formula brings forth a very important component to the 

ACO. In this case, (i, j) represents an edge between point i 

and j, and τij stands for the pheromone on edge (i, j). ηij is the 

desirability of edge (i, j). q0 is a user-defined parameter with 

(0 ≤ q0 ≤ 1), β is the parameter controlling the relative 

importance of the desirability. U is the set of sites available 

for facilities i.  

Moreover when q > q0 each facility will be selected 

based on a probability calculating mechanism. This selection 

mechanism acts similar to the “Roulette Wheel Selection” 

function. The probability to assign the facility i to the 

location j is given below: 

Probi,j = 
  
  

Uv
iviv

ijij








 (7) 

where U is the set of locations. The “roulette wheel” is 

known as a selection strategy since its mechanism is a 

simulation of the function of a roulette wheel. Every location 

has its percentage in the roulette wheel and the bigger this 

percentage is, the larger the width of slot in the wheel, so the 

probability of that location also becomes larger. 

 

2.2 Pheromone Updating Rule 
 

The pheromone updating of ACS comprises of the 

global and local pheromone updating rule. A certain amount 

of pheromone is deposited when an ant goes by. This can be 

classified as a continuous process, but it can be regarded as a 

discrete release by two rules which are the local updating 

pheromone rule and global updating pheromone rule. The 

former occurs while the ant is constructing its path, because 

it modifies the amount of pheromone on the used edges by 

applying this rule. This simply means that the ant applies this 

rule that encourages the generation of different solutions to 

those yet found; that is, it improves the ants’ solutions before 

updating the pheromone trails. This rule also implies that 

ants don’t follow the same path travelled whereby a quick 

convergence to the solution may occur. Early convergence 

happens when too many ants gather in a wrong path and the 

pheromone becomes so dense that a better route cannot be 

discovered. The local update rule can be formulated as (8). 

 

τij
new

 = ρ * τij
old

 + (1 - ρ) * Δτij (8) 

 

Furthermore, in ACS only the iteration-best ant is 

permitted to add pheromone after each iteration. The global 

updating pheromone rule is crucial to guarantee better results. 

The global pheromone value also referred to as the offline 

pheromone update is responsible to update the pheromone at 

the end of the construction process. This offline update is 

performed only by the best ant; that is, only edges that were 

visited by the best ant are updated. The offline update rule 

shows that the feasibility solution has no solution. The 

Initialization 

 Set Parameters and Stopping Criteria 

 

Generate Solution xi for ant i 

by transition rule 

 

Local Pheromone Update 

whenever an ant makes a move 

Find the best ant with minimum 

objective value (xbest) 

Global pheromone update by xbest'. 

Update the best solution so far. 

 Every ant generates a solution 

 Stopping Criteria reached? 

END 

NO 

YES 

YES 

NO 

i = i + 1 

Perform the local search for xbest 

and obtain local optimum xbest' 
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pheromone value is updated globally after all the ants have 

completed the gates assignment task and local search. The 

global pheromone updating rule is calculated based on the 

equation (9). 

 

τij
new

 = ρ * τij
old

 + (1 - ρ) * Δτij (9) 

where 

Δτij = 1/f(xbest') (10) 

 

2.3 Local Search 
 

The mechanism of the local search designed in our 

ACO is that in the neighborhood of a permutation of feasible 

solutions is obtained by swapping two facilities’ locations. 

What actually occurs is that it randomly selects two facilities 

from all facilities, and makes the interchange of their 

positions. The purpose of the local search is to guarantee an 

efficient way to improve solutions. That is, if in the 

neighborhood of the current assignment f(xbest)  a better 

assignment is found f(xbest'), it replaces the current 

assignment and the local search is continued from f(xbest') as 

shown in Figure 1. This mechanism is also vital in the 

overall performance of the ACO. 

 

3. NUMERICAL RESULTS 
 

In order to test our ACO algorithm for the Quadratic 

Assignment Problem, we test its solution quality, robustness, 

and computational time in different instances. In this section 

we will acquire insights into better understanding the 

characteristics of our heuristic approach. By running the 

heuristic across Nugent et al. (1968) and Palubeckis’ (2000) 

test problems of various sizes and characteristics, it may be 

able to show how well our heuristic performs for the QAP. 

These test problems are also used as benchmarks to test our 

QAP. Nugent’s et al. (1968) problem instances are probably 

the most used according to the QAPLIB. Palubeckis’ (2000) 

test problems are a new set of QAP instances containing 

provably optimal values of the objective function which will 

be discussed further. 

 

3.1 QAP instances 
 

Our proposed ACO for the Quadratic Assignment 

Problem is coded in Visual C++ 6.0, and run on a personal 

computer with an AMD Athlon (TM) XP 3800+ (2.20 GHz) 

CPU and 512 MB RAM, under Windows XP Operating 

system.  

For the QAP we took Nugent et al. (1968) test problems 

as one of two sets of benchmarks to compare our results 

obtained from our ACO algorithm. The set of problem 

instances contains size of 5, 6, 7, 8, 12, 15, 20, and 30 

facilities. We used Nugent’s instances sizes of 12, 15, 17, 

16a, 16b, 17, 18, 20, 21, 22, 24, 25, 27, 28 and 30 found in 

the QAPLIB. It is known that these problems possess 

distance matrices stemmed from n1×n2 grid (a generalized 

quadrangle) and their distances are defined as Manhattan 

distances between grid points, and multiple global optima is 

involved in those QAP instances. Another characteristic is 

that these globally optimal solutions are at the maximum 

possible distances from other solutions. It is important to 

note that the solution values for the Nugent’s instances were 

re-found several times, and it is a continuous task to achieve 

unique results.  

Furthermore, we adopted problem provided by 

Palubeckis (2000) to test our ACO algorithm for larger 

instances. These QAP instances which can also be found in 

the QAPLIB (http://www.opt.math.tu-graz.ac.at/qaplib/) are 

very difficult to solve due to the algorithm used to generate 

these instances. Palubeckis (2000) explained that the 

algorithm differed from similar existing generators in that 

the sizes of the graphs are larger, i.e. affecting the 

construction of the flow matrix; meaning up to the problem 

size. Similar to Nugent’s problem instances, these QAP 

instances are also of rectilinear version. To test the 

robustness of our ACO algorithm, we used Palubeckis’ 

problem sizes of 20, 30, 40, 50, 60, 70, 80, and 100. The 

results will be discussed in later sections. 

 

3.2 Parameter Sensitivity Analysis 
 

In order to obtain valid and accurate results in our ACO 

algorithm we tested different parameters to solve the 

assignment of facilities to sites. We used Nugent et al.’s 

problem instances 14, 16a, 17, 20, 22, 24, 25, 28 and 30 to 

find the best parameters. The default value for each 

parameter is set as β = 2, ρ = 0.2, q0 = 0.5, b = 10. The 

number of iterations (N) set as default was the problem size 

(n) tested. When one parameter is tested, the others are set as 

their default values in the experiment. These values tested 

are β{1, 2, 3, 4, 5}, ρ{0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, 

q0 {0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9}, b{5, 10, 15, n), and 

N{n/2, n/3, n/5, n}. The average percentage deviations 

(GAP %) and computational time in seconds over 20 runs 

are summarized in the tables below. The number of iterations 

chosen was in accordance to the problem size. In light of this 

analysis we achieved the following measures of performance 

in our ACO algorithm: 

 Solution quality which measures the lowest value of the 

objective function (least cost) as an important factor 

considered in our results.  

 Robustness is known as the ability of a heuristic to perform 

well over a wide range of test problems and is usually 

captured through measures of variability. We must 

understand the importance that whenever a heuristic is not 

consistent, meaning that it gives the best solution in one (or 

very few instances), but performs very poorly in most 

other instances is not considered effective. 

 Speed of execution is taken as the computational time 

which is a measurement to study the trade-off between 

quality of solution and time required to run a case. 

In this sense, we have seen that the average percentage 
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deviations not only depict the performance of the algorithm, 

but also show the robustness in the same context. For our 

analysis, we used average percentage deviations; however, 

the least cost (optimal solution) is adopted in the final 

solution. 

Table 2 portrays the performance of parameter b on the 

solution quality. We observe that b = 15 provides the best 

results by the average percentage deviations (Gap %) over 

the best known solutions (Nugent’s benchmarks). Hence, we 

can observe the consistency of our ACO algorithm provided 

that it gives best solution on every problem instance tested. 

 

Table 2 Average Gap and CPU time for different b 

Problem 
b 

5 10 15 n 

14 0.50  0.48  0.72  0.67  

16a 0.58  0.68  0.57  0.63  

17 0.57  0.59  0.33  0.49  

20 0.56  0.60  0.46  0.50  

22 0.28  0.22  0.29  0.30  

24 2.91  0.80  0.72  0.89  

25 0.22  0.27  0.20  0.20  

28 0.92  0.86  0.99  1.08  

30 0.69  0.66  0.85  0.78  

Avg. Gap (%) 0.80  0.57  0.57  0.62  

Avg. Time (sec) 4.61  4.26  4.20  4.10  

 

Table 3 shows the relative effect of pheromone on 

distance savings in our ACO algorithm. The impact of 

parameter β on the solution quality also shows the 

effectiveness and consistency to obtain optimal solutions 

ornear optimal solutions as compared with the benchmarks 

used. The best average percentage deviations is obtained 

with value β = 3.  

 

Table 3 Average Gap and CPU time for different β 

Problem 
β 

1 2 3 4 5 

14 1.01  0.48  0.60  0.98  0.74  

16a 0.63  0.68  0.54  0.65  0.55  

17 0.48  0.59  0.42  0.46  0.67  

20 0.55  0.60  0.40  0.50  0.49  

22 0.16  0.22  0.32  0.34  0.24  

24 0.70  0.80  0.68  0.90  0.86  

25 0.27  0.27  0.25  0.22  0.21  

28 0.89  0.86  1.06  1.45  1.39  

30 0.74  0.66  0.70  0.59  0.74  

Avg. Gap (%) 0.60  0.57  0.55  0.67  0.65  

Avg. Time (sec) 4.13  4.26  4.75  4.61  4.96  

 

Table 4 portrays the impact of parameter ρ on the 

solution quality. Once more the results of the deposited 

pheromone discounted by a factor ρ provide us with clear 

evidence that our ACO algorithm is consistent. The results 

are optimal values or near optimal values as compared with 

the benchmark used. The best average percentage deviations 

is obtained with value ρ = 0.1. 

 

Table 4 Average Gap and CPU time for different ρ 

Problem 
ρ 

0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 

14 0.45  0.48  0.92  1.12  1.12  0.80  1.23  1.16  

16a 0.60  0.68  0.52  0.71  0.53  0.75  0.78  0.83  

17 0.61  0.59  0.44  0.40  0.47  0.70  0.81  0.54  

20 0.58  0.60  0.43  0.58  0.54  0.30  0.52  0.75  

22 0.25  0.22  0.40  0.24  0.38  0.42  0.46  0.66  

24 0.66  0.80  0.69  0.61  0.83  0.72  0.83  0.93  

25 0.34  0.27  0.19  0.19  0.17  0.16  0.11  0.21  

28 0.82  0.86  1.11  1.00  1.03  1.15  1.36  1.44  

30 0.62  0.66  0.72  0.70  0.55  0.41  0.34  0.54  

Avg. Gap  0.55  0.57  0.60  0.62  0.62  0.60  0.72  0.78  

Avg. Time 3.68  4.26  4.11  3.49  3.63  3.78  3.60  3.86  

 

 

Table 5 shows the impact of parameter q0 on the 

solution quality. The nature of the parameter q0 determines 

the relative importance of exploitation versus exploration. 

With a high value of q0 we can observe that our ACO 

algorithm is consistent for the results are optimal values or 

near optimal values as compared with the benchmark used. 

The better solutions are found when q0 = 0.5 giving clear 

evidence that our ACO algorithm is consistent for the results 

are optimal values or near optimal values as compared with 

the benchmark used. 

 

 

Table 5 Average Gap and CPU time for different q0 

Problem 
q0 

0.1 0.2 0.4 0.5 0.6 0.8 0.9 

14 0.85  0.86  0.63  0.48  1.09  1.19  1.77  

16a 0.50  0.76  0.62  0.68  0.91  1.03  1.34  

17 0.38  0.49  0.41  0.59  0.47  1.03  1.13  

20 0.65  0.68  0.65  0.60  0.70  0.76  1.07  

22 0.21  0.17  0.26  0.22  0.22  0.64  0.60  

24 0.78  0.80  0.63  0.80  0.70  0.91  1.08  

25 0.24  0.29  0.23  0.27  0.27  0.40  0.51  

28 0.85  0.75  1.07  0.86  1.03  0.93  1.47  

30 0.80  0.62  0.69  0.66  0.60  0.61  0.71  

Avg. Gap  0.58  0.60  0.58  0.57  0.67  0.83  1.07  

Avg. Time 5.67  5.67  6.55  4.26  4.88  5.38  2.94  

 

 

As a result based on the parameter sensitivity analysis 

made, the parameters selected for our ACO algorithm in the 

experiment are: b = 15, β = 3, ρ = 0.1, q0 = 0.5. The number 

of iterations (N) used for each run is set as for each problem 

size tested as shown in Table 6. Consequently, after 

performing 20 runs, the least costs (optimal values) are 

obtained and reported. 
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Table 6 Average Gap and CPU time for different iterations 

Problem 
iterations 

n/2 n/3 n/5 n 

14 0.98  1.39  2.08  0.48  

16a 0.94  1.47  1.89  0.68  

17 0.85  1.01  1.25  0.59  

20 1.11  1.37  0.60  0.60  

22 0.58  0.78  1.02  0.22  

24 1.16  1.36  1.92  0.80  

25 0.42  0.56  0.71  0.27  

28 1.15  1.34  1.65  0.86  

30 0.81  0.93  1.09  0.66  

Avg. Gap (%) 0.89  1.13  1.36  0.57  

Avg. Time (sec) 2.32  1.81  1.07  4.26  

 

3.3 The result of Ant Colony System for the QAP 
 

To test our Ant Colony Optimization algorithm for the 

Quadratic Assignment Problem, we tested our ACO on the 

benchmark problems of Nugent et al. (1968) and Palubeckis 

(2000). In many researches, these instances are applied to 

test their algorithms for efficiency and effectiveness. These 

problems can be downloaded from the website of QAPLIB.  

In our case we used Nugent et al.’s instances from 12 to 

30 locations. Also, we run Palubeckis’ problem instances of 

20, 30, 40, 50, 60, 70, 80, and 100 which are considered to 

be large instances and very difficult to solve. We compared 

the results obtained by a multi-start descent (MSD) 

algorithm by Palubeckis. These problems are never solved to 

optimality. We found that very high quality solutions in short 

computation time can be achieved when applying ACO 

algorithm to solve Nugent’s QAP instances. Tables 7 and 8 

show the results obtained from our ACO program. Table 9 

provides a comparison of our ACO for the Quadratic 

Assignment Problem with Multi-Start Descent heuristic for 

the Palubeckis’ large problem instances. 

 

4. CONCLUSION 
 

In this research, we developed an ACO algorithm to 

solve the Quadratic Assignment Problem. An Ant Colony 

Optimization algorithm is known to be one of the most 

effective heuristic approaches in present day. ACO is an 

approximate algorithm used to obtain good enough solutions 

to hard combinatorial optimization problems in a reasonable 

amount of computational time. When compared to some of 

the best heuristics for the QAP, ACO is among one of the 

best as far as real world, irregular, and structured problems 

are concerned. 

The QAP literature dwells in the fact that such a 

problem is generally recognized as a very difficult 

combinatorial optimization problem. To solve the QAP only 

heuristic algorithms have the capacity to meet such a 

demand. It is known that exact algorithms can only solve in 

a reasonable amount of time only small instances of the QAP; 

that is, with the number of objects less than 30. 

 

Table 7 QAP-ACO results for Nugent's Instances 

Prob.  BKS 
Best 

Values 

Min 

GAP 

Max 

GAP  

Avg. 

GAP 

Best 

No* 

Time 

(sec) 

Nug12 578 578 0.00 2.08 1.28 1 0.04  

Nug14 1014 1014 0.00 2.76 0.96 1 0.10  

Nug15 1150 1150 0.00 1.39 0.68 1 0.13  

Nug16a 1610 1610 0.00 1.24 0.38 8 0.21  

Nug16b 1240 1240 0.00 1.94 0.53 14 0.19  

Nug17 1732 1732 0.00 1.04 0.54 1 0.28  

Nug18 1930 1930 0.00 1.76 0.97 3 0.43  

Nug20 2570 2570 0.00 1.56 0.61 4 0.92  

Nug21 2438 2442 0.16 1.23 0.44 0 1.31  

Nug22 3596 3596 0.00 1.00 0.46 1 2.30  

Nug24 3488 3488 0.00 1.55 0.82 2 3.00  

Nug25 3744 3748 0.11 0.53 0.23 0 3.61  

Nug27 5234 5234 0.00 2.14 0.78 3 7.80  

Nug28 5166 5172 0.12 1.97 1.17 0 9.21  

Nug30 6124 6124 0.00 1.37 0.65 2 11.43  

Avg. 2774 2775 0.03 1.57 0.70 2.73 2.73  
*represents number of times optimal solutions are obtained. 

 

Table 8 QAP-ACO results for Palubeckis’ Instances 

Prob.  BKS 
Best 

Values 

Min 

GAP  

Max 

GAP  

Avg. 

GAP  

Time 

(sec) 

Palu20 81536 81817 0.25 0.46 0.34 1.16  
Palu30 271092 272654 0.52 0.63 0.58 10.28  
Palu40 837900 840930 0.34 0.39 0.36 62.48  
Palu50 1840356 1847422 0.36 0.41 0.38 226.43  
Palu60 2967464 2978898 0.37 0.40 0.39 605.83  
Palu70 5815290 5832460 0.28 0.31 0.30 1464.32  
Palu80 6597966 6618736 0.31 0.32 0.31 3042.79  
Palu100 15008994 15048806 0.26 0.27 0.27 6062.05  
Avg. 4177575 4190215 0.34 0.40 0.37 1434.42  

 

This study has used the special library called QAPLIB, 

and has been taken as benchmarks to test the effectiveness 

and robustness of our ACO algorithm. The standard test 

problems used were of instances from Nugent et al. (1968) 

and Palubeckis (2000). The ACO proved to solve both set of 

test problems to near optimal solutions or optimal solutions. 

Nugent’s problem sizes were solved to optimality. However, 

we learnt that indeed large problems instances cannot be 

solved to optimality as described in the QAP literature. 

 

Table 9 MSD Algorithm vs. Our ACO 

Problem MSD Our ACO Gap (%) 

Palu20 81536 81817 0.34 

Palu30 272080 272654 0.21 

Palu40 840308 840930 0.07 

Palu50 1846876 1847422 0.03 

Palu60 2978216 2978898 0.02 

Palu70 5831954 5832460 0.01 

Palu80 6618290 6618736 0.01 

Palu100 15047406 15048806 0.01 

Avg. 4189583 4190215 0.02 
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