
 

 

  
Abstract—In the traditional concept of product life cycle 

management, the activities of design, manufacturing, and assembly 
are performed in a sequential way. The drawback is that the 
considerations in design may contradict the considerations in 
manufacturing and assembly. The different designs of components can 
lead to different assembly sequences. Therefore, in some cases, a good 
design may result in a high cost in the downstream assembly activities. 
In this research, an integrated design evaluation and assembly 
sequence planning model is presented. Given a product requirement, 
there may be several design alternative cases to design the components 
for the same product. If a different design case is selected, the 
assembly sequence for constructing the product can be different.  In 
this paper, first, the designed components are represented by using 
graph based models. The graph based models are transformed to 
assembly precedence constraints and assembly costs. A particle 
swarm optimization (PSO) approach is presented by encoding a 
particle using a position matrix defined by the design cases and the 
assembly sequences. The PSO algorithm simultaneously performs 
design evaluation and assembly sequence planning with an objective 
of minimizing the total assembly costs. As a result, the design cases 
and the assembly sequences can both be optimized. The main 
contribution lies in the new concept of integrated design evaluation 
and assembly sequence planning model and the new PSO solution 
method. The test results show that the presented method is feasible and 
efficient for solving the integrated design evaluation and assembly 
planning problem. In this paper, an example product is tested and 
illustrated. 
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I. INTRODUCTION 
HE purpose of assembly sequence planning is to determine 
a proper sequence of components and assembly operations.  

With the ordered sequence, the components can be located at 
the specified positions and fixed with the assembly operations 
to construct the final product. In assembly sequence planning, 
the components and the assembly operations are arranged in an 
ordered sequence under the constraints of operational 
constraints and precedence constraints to achieve the assembly 
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cost objectives. In the traditional concept of product life cycle 
management, the activities of design, manufacturing, and 
assembly are performed in a sequential way. In traditional 
assembly sequence planning models, the assembly sequences 
are planned after the design of components is completed.  
Because the design specifications of the components are 
defined, the alternatives in assembly sequence planning will be 
confined in a small domain.   

The design requirements are usually specified for the 
functional and aesthetic purposes. On the other hand, 
manufacturing and assembly activities usually consider costs.  
As a result, the considerations in design may contradict the 
considerations in manufacturing and assembly.  For example, a 
good design with good functions can cause some difficulties in 
the corresponding assembly sequences. In this way, a good 
design may result in a high cost in the subsequent assembly 
sequences. 

In the typical design for assembly models, the design 
specification of each component is analyzed to evaluate the 
spatial and connection relationships between the components.  
The spatial and connection relationships are then used to 
analyze the collision-free assembly directions and assembly 
operations. The degrees of difficulty in the assembly directions 
and operations are then evaluated to determine the feasibility 
and suitability of the design. If the product is evaluated as 
difficult to be assembled, then the design may need to be 
changed. After some components are changed, the assembly 
directions and operations can be improved. By changing the 
design of components, the difficulty in the assembly directions 
and operations can be reduced to achieve the goal of design for 
assembly. 

In the typical design for assembly models, the analysis and 
evaluation are performed in a sequential and interactive way.  
Moreover, the design evaluation and the assembly sequences 
are not concurrently planned. Therefore, it requires an 
integrated design evaluation and assembly sequence planning 
model to improve the traditional approach. 

In this research, an integrated design evaluation and 
assembly sequence planning model is presented. Given a 
product requirement, there may be several design alternative 
cases for designing the components for the same product. If a 
different design case is selected, some the components may be 
different. An assembly sequence is required to locate and fix 
the components to construct the product.  Therefore, if a 
different design case is selected, the assembly sequence can be 
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different. 
 In this paper, first, the design specifications of components 

are defined by using graph based models. An assembly 
precedence graph (APG) is built to represent the adjacency and 
precedence relationships between the components. The graph 
based models are transformed to an assembly precedence 
matrix (APM) to represent the precedence constraints. A 
particle swarm optimization (PSO) approach is developed by 
encoding a particle with a position matrix defined by the design 
alternative cases and the assembly sequences. The PSO 
algorithm simultaneously performs design evaluation and 
assembly sequence planning under the precedence constraints 
with an objective of minimizing the total assembly costs.  

The presented models and algorithms were implemented and 
tested.  This paper is organized as follows. Section 2 presents a 
literature review. Section 3 describes the model for integrated 
design evaluation and assembly sequence planning. Section 4 
presents the PSO algorithm.  Implementation and test results 
are presented in Section 5.  Conclusions are discussed in 
Section 6. 
 

II.   LITERATURE REVIEW 
In the related research, it can be summarized that assembly 

sequence planning can be performed with three stages: (1) 
assembly representation and modeling, (2) assembly sequence 
generation, and (3) assembly sequence evaluation and 
optimization. Lin and Chang [1] presented an assembly 
precedence diagram (APD) which is a directed graph 
representing the precedence of the components and the 
associated assembly operations. In Abdullah et al. [2], a review 
of assembly sequence planning methods was presented. Lai and 
Huang [3] presented a systematic approach for automatic 
assembly sequence generation. Chen and Lin [4] presented 
optimizing assembly planning through a three-stage integrated 
approach. Su [5] introduced a geometric constraint analysis 
method to generate assembly precedence and to evaluate 
feasible assembly sequences. Dong et al. [6] presented an 
assembly tree hierarchy to analyze geometric and 
non-geometric information for assembly sequence planning. In 
the recent research, Tseng et al. [7] presented a multi-plant 
assembly sequence planning model using a GA method to 
integrate assembly sequence planning and plant assignment. Jin 
et al. [8] presented an assembly sequence optimization method 
for complex mechanical product by employing a directed graph 
and an assembly matrix to represent the assembly relation. In 
Gao et al. [9], the memetic algorithm was used to solve the 
assembly sequence planning problem by combining the parallel 
global search nature of evolutionary algorithms with local 
search to improve individual solutions. 

With a given set of components, sequencing the components 
may become a combinatorial problem. From the solution aspect, 
the PSO (particle swarm optimization) algorithm has been 
shown to be effective and efficient in solving different 
optimization problems. The PSO has been successfully applied 

to many continuous and discrete optimizations [10], [11].  
Banks el al. [12] reviewed and summarized the related PSO 
research in the areas of hybridization, combinatorial problems, 
multiple objectives and constrained optimization areas. 

In this research, a PSO algorithm with a new encoding 
scheme is developed for concurrently performing design 
evaluation and assembly sequence planning. 

III. REPRESENTATION MODELS 

A. Assembly Precedence Graph 
An assembly precedence graph (APG) is modeled for 

representing the components and the assembly operations.   
 

APG is a directed graph G = (C, A),                        (1) 
 
where C = {c1, …, cn} = the set of components, 
ci = (component node) = a component, i = 1, …, n, 
A = {a1, …, am} = the set of operation arcs between component 

nodes, 
 

As shown in Figure 1, the example product A is a mobile 
phone with 13 main components.  The APG of the product A is 
shown in Figure 2. 

B. Assembly Precedence Matrix 
An APG is transformed into an assembly precedence matrix 

(APM) for use in the PSO.   
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where ci and cj are components,  
bij = 1 represents that component cj must be assembled before 

component ci. 
 

APM for the example product A = 

000000000000013
100000000000012
100000000000011
111001000000010
111001000000009
111000000000008
111001000000007
111001000000006
111001100000005
111001100000004
111001101000003
111001100100002
111111111111001

13121110090807060504030201

=

 
 

C. Design Alternative Case Table 
Design alternative cases are represented in a table format.  

Given a product requirement, the design of the components can 



 

 

be represented as the original design. With the same product 
requirement, some of the components can be changed to satisfy 
the assembly constraints and to attend the assembly cost 
objectives. If some of the components are changed in design, 
the assembly constraints and the assembly costs may be 
reduced.  By changing the design, the assembly sequences can 
be affected in constraints and be improved in costs. In this way, 
the design and assembly sequences can both be evaluated and 
optimized.   

A design alternative case table (DCT) is developed for use in 
the design representation and assembly sequence planning. The 
general form of a DCT is shown in Table I. In the table, given 
an original design and the design alternative cases dj = 1, …, m, 
a value of tij = 1 indicates that the component ci  is changed in 
design dj. A value of tij = 0 indicates that the component ci  is 
not changed in design dj. The DCT of the product A is shown in 
Table II. 

If a design alternative case is selected, a different set of 
components are used in the building of APG and APM.  If 
different APG and APM are built, the assembly sequences will 
be affected. In this way, by selecting different design 
alternative cases, the design evaluation and assembly sequence 
planning can be concurrently performed 
 

IV. SOLUTION USING PARTICLE SWARM OPTIMIZATION 
METHOD 

A PSO algorithm is presented for simultaneously performing 
design evaluation and assembly sequence planning.The PSO 
algorithm is an evolutionary computation method introduced 
by Kennedy and Eberhard (1995, 1997). In PSO, each particle 
moves around in the multi-dimensional space with a position 
and a velocity.  The velocity and position are constantly 
updated by the particle’s own experience and the experience of 
the whole swarm. Given a problem, a particle can be encoded to 
represent a solution.  Each solution, called a particle, flies in the 
search space towards the optimal position. 

In the original definition, a particle is defined by its position 
and velocity. The position of a particle i in the D-dimension 
search space can be represented as Xi=[xi1, xi2, …, xid, …, xiD].  
The velocity of the particle i in the D-dimension search space 
can be represented as Vi=[vi1, vi2, …, vid, …, viD].   Each particle 
has its own best position Pi=[pi1, pi2, …, pid, …, piD] 
representing the particle’s personal best objective (pbest) at 
time t. The global best particle is denoted as pg and the best 
position of the entire swarm (gbest) is denoted as Pg=[pg1, 
pg2, …, pgd, …, pgD] at time t. To search for the optimal solution, 
each particle adjusts its velocity according to the velocity 
updating equation and position updating equation.   
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where d =1, …, D, i =1, …, E (number of particles),  

new
idv : the new velocity of i in the current iteration t,  
old
idv : the velocity of i in the previous iteration (t - 1),  

c1 and c2: constants called acceleration coefficients, 

wi: the inertia weight,  
r1 and r2: two independent random numbers with a uniform 

distribution [0, 1],  
pid: the best position of each individual particle i, 
pgd: the best position of the entire swarm. 
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where new

idx  is the new position in the current iteration t, old
idx  

is in the previous iteration (t - 1). 
 

A. Encoding and Decoding Scheme 
In the developed encoding scheme, a particle represents a 

design alternative case and the corresponding assembly 
sequence. A heuristic sequencing and selection rule for 
encoding and decoding is introduced as follows.  

The position of particle i is represented by a position matrix, 
denoted as Xijk, j = 1, …, (M+1), k = 1, …, N, where N is the 
number of components and M is the number of design 
alternative cases. In the heuristic sequencing rule, the values in 
the first row S of Rs1, Rs2, …, RsN represent the ranked order 
values of the N components in an assembly sequence. 

In each column, the values from row F1 to row FM represent 
the ranked assignment values for design alternative case 
selection.  In the heuristic selection rule, the component Ck is 
assigned to the design alternative case with the smallest value 
in the column of R1k, R2k, …, RMk.   
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where i = 1, …, E, where Fj is a plant, j =1, …, M, and Ck is a 
component, k =1, …, N, 
Rsk represents the ranked order value of a component k, 
Rjk represents the ranked selection value for component k 

assigned to design j. 
 

In the heuristic rule for assembly sequencing, the values in 
[Rs1, Rs2, …, Rsk, …,  RsN] are sorted in an ascending order. The 
ranked order values represent the ordered position of 
component Ck in the assembly sequence. For example, if the 
values of row S are [4.5  1.1  3.2  7.6  5.3], then the ordered 
positions of (C1, C2, C3, C4, C5) are (third, first, second, fifth, 
fourth).  The assembly sequence is determined as (C2, C3, C1, 
C5, C4).   

In the heuristic rule for design alternative case selection, in 
each column of Ck, the component Ck is assigned to the design 
alternative case with the smallest ranked assignment value in 
Rjk, for j = 1, …, M.  For example, if there are four design 
alternative cases, the values of column C2 are [3.1  5.8  1.5  
6.9]T, then the smallest value is 1.5 of design D3. It means that 



 

 

the component C2 is changed in design alternative case D3.   

B. Fitness Function 
The cost functions include two major items. The assembly 

operational costs are mainly related to assembly sequencing, 
whereas the design related costs are primarily related to a 
design change and its related cost for changing the 
components.   
 
1) Assembly operation cost (AOC): The assembly operation 

cost is the basic operational cost for performing an 
assembly operation. 

2) Assembly tool change cost (ATC): To perform the 
assembly operation, proper tools are required. If two 
tools are different, then an assembly tool change cost is 
required.   

3) Assembly setup change cost (ASC): If two consecutive 
setups are different, then an assembly setup change cost 
is required.   

4) Design related cost (DRC): Proper design related cost for 
designing and changing the components in the design 
alternative cases. 

 
The total cost function (TC) can be formulated as follows 

(unit: dollars). 
 
TC = AOC + ATC + ASC +DRC                                        (6) 
    

In the PSO evaluation, the objective is to minimize the fitness 
function as follows. 
 
 Min Fitness = TC,                                                                 (7)  
 
Fitness: the fitness function value of a particle. 
 

C. Integrated Design Evaluation and Assembly Sequence 
Planning  

The flowchart is shown in Figure 3. 
Step 1. Setup parameters. 

1) Set iteration t = 0. 
2) TNumber: the iteration (generation) number.   
3) PSize: the number of particles.   

 
Step 2. Initialize a population of particles i = 1, …, E,with 

random positions and velocities. 
1) A particle i is defined by a multi-dimensional position 

matrix of (N)*(M+1).   
2) The position of particle i is defined by Xijk.  
3) The velocity of particle i is defined by Vijk. 

 
Step 3. Evaluate the fitness function. 

1) t = t + 1.  
2) Fitness = TC. 

 
Step 4. Update the velocity of each particle i. 

( ) ( )idgdidid
old
idi

new
id xprcxprcvwv −⋅⋅+−⋅⋅+⋅= 2211 ,  
new
idv is the new velocity in the current iteration t,  

old
idv is the velocity in the previous iteration (t-1),  

 
Step 5. Move the position of each particle i.   

new
id

old
id

new
id vxx += ,                                                              

where new
idx  is the new position in the iteration t,  

old
idx  is the position in the iteration (t - 1). 

 
Step 6. Check the feasibility of the solution and the number of 

iteration t. 
1) The precedence is checked by APM. 
2) The design alternative case is checked by DCT. 
3) If (t  > TNumber), then go to Step 7, else go to Step 2.   

 
Step 7. Decode the best particle position and interpret the 

solution.   
 

V. IMPLEMENTATION AND TEST RESULTS 
The presented models were implemented and tested by 

developing software on a personal computer with a 3.0 GHz 
CPU and 1 GB memory. The example product A as illustrated 
in Figure 1 was modeled and tested. The product A is a mobile 
phone with 13 main components. There are 4 proposed design 
alternative cases. The APG of the product A is shown in Figure 
2. The APM of the product A is listed in the section 3 as 
described earlier. TheDCT of the product A is shown in Table 
II. The numerical values of the PSO parameters are tested with 
an experiment using a Taguchi’s orthogonal array to find the 
best combination of parameters of TNumber = 80, PSize = 20, wi = 
0.9, and (c1, c2) = (2, 2).  

Figure 4 shows that the computation converges after 32 
generations with a cost of 258 (unit: dollars) and a computer 
time of 0.0312 (unit: seconds). The position matrix of the final 
solution is shown in Table III.  

As shown in Table IV, the position matrix of the solution 
particle is decoded into assembly sequence and design 
alternative case information.  The assembly sequence can be 
listed as C13-C12-C11-C8-C6-C9-C10-C7-C4-C2-C5-C3-C1. 

 The information of design alternative cases shows that the 
components C13-C12-C11 are changed in D2. The components 
C8-C6-C9-C10-C7 are changed in D3. The components 
C4-C2-C5-C3 are changed in D2. Finally, the component C1 is 
changed in D3 to complete the final product. As observed from 
the illustrative example, it shows that the developed model and 
algorithm present a feasible and efficient solution method. 

 

VI. CONCLUSIONS  
In this research, an integrated design evaluation and 

assembly sequence planning model is presented to perform two 
tasks, design evaluation and assembly sequence planning. A 
PSO algorithm is developed for simultaneously optimizing the 
design of components and the assembly sequence planning.  
First, an assembly precedence graph (APG) is built. The 



 

 

assembly precedence matrix (APM) is modeled for checking 
feasibility of the sequences. The information of design 
alternative cases is modeled in the design alternative case table 
(DCT). Next, a PSO algorithm is presented to search for the 
solutions. A new PSO encoding scheme is developed for 
assembly component sequencing and design evaluation. A 
particle is represented as a position matrix defined by the 
number of components and the design alternative cases. The 
fitness function is formulated by integrating assembly 
operation cost, assembly tool change cost, assembly setup 
change cost, and design related cost. The test results show that 
the PSO method converges fast to reach a minimized cost 
objective. It can be generally concluded that the developed 
models and the PSO algorithm are feasible and efficient for 
solving integrated design evaluation and assembly sequence 
planning. Future research should be concerned with a detailed 
analysis of the relationship between design parameters and 
assembly operations. In addition, it requires an investigation of 
the complexity to reduce the computational time.  
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Fig. 1 The example product A is a mobile phone with 13 main 

components   
 

 
Fig. 2 The APG of the example product A 



 

 

 
Fig. 3 The flowchart of the PSO algorithm 

 

 
Fig. 4 The test result of the PSO for product A. 

 
 
 
 
 
 
 
 
 
 

TABLE I 
 DESIGN ALTERNATIVE CASE TABLE (DCT) 

Design dj 
   

Component ci 
1 2 … m 

1 t11 t12  t1m 
2 t21 t22 tij t2m 
n tn1 tn2  tnm 

tij = 1 indicates that ci is changed in design dj,   
tij = 0 indicates that ci is not changed in design dj. 

 
TABLE II  

THE DCT OF PRODUCT A. 
Design dj 

 
Component pi 

D1 D2 D3 D4 

1 0 0 1 1 
2 1 1 0 0 
3 1 1 0 0 
4 1 1 0 0 
5 1 1 0 0 
6 0 0 1 1 
7 0 0 1 0 
8 0 0 1 0 
9 0 0 1 1 

10 0 0 1 1 
11 0 1 0 0 
12 0 1 0 0 
13 1 1 1 1 

 
 

TABLE III 
THE SOLUTION POSITION MATRIX FOR PRODUCT A. 

 
 

TABLE IV 
THE SOLUTION OF THE INTEGRATED DESIGN EVALUATION AND ASSEMBLY 

SEQUENCE PLANNING FOR PRODUCT A. 

Assembly 
sequence 

Component Design 
alternative case

1 13 D2 
2 12 D2 
3 11 D2 
4 8 D3 
5 6 D3 
6 9 D3 
7 10 D3 
8 7 D3 
9 4 D2 

10 2 D2 
11 5 D2 
12 3 D2 
13 1 D2 

 


