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Abstract. Web catalog integration is an emerging problem in current digital con-
tent management. Past studies show that more improvement on integration ac-
curacy can be achieved with advanced classifiers. Because Support Vector Ma-
chine (SVM) has shown its supremeness in recent research, we propose an iter-
ative SVM-based approach (SVM-IA) to improve the integration performance.
We have conducted experiments of real-world catalog integration to evaluate the
performance of SVM-IA and cross-training SVM. The results show that SVM-IA
has prominent accuracy performance, and the performance is more stable.

1 Introduction

Web catalog integration is an emerging problem in current digital content management
[1, 6–8]. For example, a B2C company such as Amazon may want to merge catalogs
from several on-line vendors into its catalog to provide customers versatile contents.
As noted in [1], catalog integration is more than a classification task because if some
implicit source information can be exploited, the integration accuracy can be highly
improved. In [1], an enhanced Naive Bayes classifier (NB-AS) is proposed and its im-
provements are justified.

Recently, several studies [2–5] have shown that Support Vector Machine (SVM)
achieves better classification accuracy on average. In [2], a cross-training SVM (SVM-
CT) approach is proposed to improve the accuracy by extracting the implicit relation-
ships between the source and the destination catalogs. However, SVM-CT outperforms
SVM in only nearly half the cases. In addition, the cross-training process is very time-
consuming. In [4], a topic restriction approach is proposed to improve NB and SVM
by restricting the classification of any document to a small set of candidate destina-
tion categories. A candidate category is decided if more than a predefined number of
common documents appear in both source and destination categories. Although this
approach can significantly improve the performance of NB, it only slightly improves
the performance of SVM. In [5], Zhang and Lee propose a Cluster Shrinkage approach
in which the documents of the same category are shrunk into the cluster center. The
conducted transductive SVM called CS-TSVM can consistently outperform NB-AS.
However, because the shrinking process is applied to all documents, it suffers from
tentatively misclassifying a document into an improper destination category.

In this paper, we propose an iterative-adapting approach on SVM called SVM-IA
for catalog integration with pseudo relevance feedback. In SVM-IA, the training set
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Fig. 1. The integration process of SVM-IA.

is iteratively expanded with newly integrated items to retrain the SVM classifier. With
these adapted hyperplanes, the integration accuracy is thus improved. Since the ex-
pended features are classified first, the possibility of misclassification is reduced.

We have conducted several experiments with real-world catalogs from Yahoo! and
Google. We have also compared SVM-IA with SVM and SVM-CT. The results show
that SVM-IA outperforms SVM-CT on average, and the performance of SVM-IA is
very stable in most cases.

2 Iterative-adapting SVM

In SVM-IA, the flattened source catalog S with a set of m categories S1, S2, . . . , Sm

is intended to be merged into the flattened destination catalog D with a set of n cat-
egories D1, D2, . . . , Dn. Since a binary SVM can solve only two-class classification
problems, we adopt a “one-against-all” strategy to decompose a multi-class problem
into a set of binary SVM problems. Positive training data are composed of the feature
information extracted from the destination class, and negative training data from other
non-destination classes as in [9]. A set of binary SVM classifiers are then trained for
the integration process of each destination category.

2.1 Iterative Integration Process

Figure 1 shows the catalog integration process of SVM-IA. The set of documents in the
destination catalog is parsed first to extract the feature words as the training input of the
SVM. In feature extraction, the stopwords are removed and the remaining words are
the features for training. The SVM classifier is trained with the positive and negative
training examples extracted from the target category and other destination categories.
After the training process, a cutting hyperplane is formulated for future classification
tasks. When the classification is finished, an integration iteration is completed.

The integration process can be repeated to find a more suitable hyperplane. The
adaptation is performed by iteratively adding the newly integrated source documents



Table 1. The experimental categories.

Category Yahoo! | Y-G | | Y Test | Google | G-Y | | G Test |
Autos /Recreation/Automotive/ 1732 436 /Recreation/Autos/ 1090 451
Movies /Entertainment/Movies Film/ 1801 211 /Arts/Movies/ 612 222
Outdoors /Recreation/Outdoors/ 7266 1346 /Recreation/Outdoors/ 5184 1381
Photo ./Visual Arts/Photography/ 1921 710 /Arts/Photography/ 5721 727
Software /Computers Internet/Software/ 1637 221 /Computers/Software/ 2392 227
Doc Sum 14357 2924 14999 3017

into the training set. Since these integrated source documents may have implicit infor-
mation of the source catalog, the hyperplane can be adapted to have better separation
performance. In our study, the well-known linear kernel function was used in the SVM
classifier. SVMlight [11] was used as our SVM tool.

2.2 Feature Expansion

In the integration phase, the feature words of the source documents that have been
integrated are incorporated as the implicit catalog information to re-train the SVM clas-
sifiers. There are two thresholds to control the number of expanded feature words. One
is the term frequency, the number of term occurrences in the integrated source docu-
ments. Another is the document frequency, the number of documents in which the term
appears. If two documents belong to the same category in S, they may have strong
semantic relationships and are more likely to belong to the same category in D. There-
fore, iteratively expanding new features from the source documents will be beneficial
for the SVM classifiers to learn the semantics between feature information and enhance
the classifiers in the destination catalog.

An SVM-IA classifier constructs a hyperplane that separates the positive and nega-
tive examples by iteratively training new items from the source catalog with a maximum
margin. After new items are iteratively added into the classifier and retrained, new sup-
port vectors are created to adjust the hyperplane. Since the hyperplane is supported
by the combination of new source documents, the cutting hyperplane is automatically
adjusted by the new support vectors and would be beneficial for catalog integration.

3 Experiments

We have conducted experiments with real-world catalogs from Yahoo! and Google to
study the performance of SVM-IA with SVM light. The experimental results show that
SVM-IA consistently improves SVM in all cases, and outperforms SVM-CT on aver-
age.

3.1 Data Sets

Five categories from Yahoo! and Google were extracted in our experiments. Table 1
shows these categories and the number of the extracted documents after ignoring the



Table 2. The accuracy of catalog integration from Google to Yahoo!.

SVM CT1 CT2 CT3 IA1 IA2 IA3
Autos 89.43% 90.11% 90.80% 89.43% 93.79% 93.79% 93.79%
(435) (389) (392) (395) (389) (408) (408) (408)
Movies 85.73% 90.09% 88.97% 87.98% 86.23% 85.95% 86.30%
(1423) (1220) (1282) (1266) (1252) (1227) (1223) (1228)
Outdoors 91.16% 91.63% 90.70% 87.44% 94.42% 94.42% 94.42%
(215) (196) (197) (195) (188) (203) (203) (203)
Photo 65.40% 63.29% 69.62% 63.71% 78.48% 81.01% 80.59%
(237) (155) (150) (165) (151) (186) (192) (191)
Software 93.35% 95.05% 89.96% 94.06% 95.33% 95.47% 95.33%
(707) (660) (672) (636) (665) (674) (675) (674)
Average 93.35% 95.05% 89.96% 94.06% 95.33% 95.47% 95.33%

Table 3. The accuracy of catalog integration from Yahoo! to Google.

SVM CT1 CT2 CT3 IA1 IA2 IA3
Autos 80.96% 88.30% 85.78% 86.70% 84.86% 85.78% 85.78%
(436) (353) (385) (374) (378) (370) (374) (374)
Movies 93.39% 91.83% 88.11% 92.05% 95.54% 95.62% 95.62%
(1346) (1257) (1236) (1186) (1239) (1286) (1287) (1287)
Outdoors 82.81% 91.40% 87.33% 90.50% 86.43% 86.43% 86.43%
(221) (183) (202) (193) (200) (191) (191) (191)
Photo 81.52% 94.79% 82.94% 92.89% 86.73% 87.20% 88.15%
(211) (172) (200) (175) (196) (183) (184) (186)
Software 90.28% 96.06% 96.20% 95.77% 93.80% 93.94% 93.94%
(710) (641) (682) (683) (680) (666) (667) (667)
Average 89.12% 92.51% 89.30% 92.10% 92.20% 92.44% 92.51%

documents that could not be retrieved and removing the documents with error messages.
As in [1, 2], the documents appearing in only one category were used as the destination
catalog D, and the common documents were used as the source catalog S. The number
of distinct common documents is 2870. However, because some documents may appear
in more than one category of the same catalog, the number of test documents may
slightly vary in Yahoo! and Google. Thus, we measured the accuracy by the following
equation.

Number of docs correctly classified into Di

Total number of docs in the test dataset
In the processing, we used the stopword list in [10] to remove the stopwords.

3.2 Experimental Settings

In our experiments, both the cross-training and iterative-adapting techniques were em-
ployed on SVM to test how much they can enhance a purely text-based SVM learner. In
[2], the label attributes extracted from the DA catalog are considered useful predictors
for the DB catalog by adding extra |A| labels. Therefore, in the SVM-CT implemen-
tation, a document d ∈ DB − DA is submitted to the SVM ensemble S(A, 0), which
gives a score wcA · d + bcA for each class cA ∈ A. These scores are inserted into the
|A| columns as label attributes. To convert the scores into the term attributes, ordinary
term attributes are scaled by a factor of f (0 ≤ f ≤ 1) and label attributes are scaled by
1 − f . We followed the origin SVM-CT settings with f = 0.95 and 1 − f = 0.05.



After the transformation of label attributes, every document d ∈ DA − DB gets
a new vector representation with |T | + |A| columns where |T | is the number of term
features. Then, these new term vectors are trained as S(B, 1) to classify the test docu-
ments. As the algorithm reported in [2], the cross-training process can be repeated like
a ping-pong way.
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Fig. 2. The accuracy performance from
Google to Yahoo!.
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Fig. 3. The accuracy performance from Ya-
hoo! to Google.

3.3 Results

Table 2 lists the experimental results of integrating Google’s pages into Yahoo!’s cat-
egories. Table 3 lists the experimental results of reversely integrating Yahoo!’s pages
into Google’s categories. As listed in the two tables, we have measured the accu-
racy achieved by the following classifiers: SVM, cross-training SVM (SVM-CT), and
iterative-adapting SVM (SVM-IA). IA1, IA2, and IA3 separately represent the result
by first, second, and third iterations of adding new features from the source catalog and
retraining. Similarly, CT1 is the result of first cross-training with the label attributes
extracted from the source catalog. The result of CT2 is based on the SVM-CT1 classi-
fiers proceeding with the second cross-training, and so is the result of CT3 based on the
SVM-CT2 classifiers.

Table 2 and Table 3 both show that SVM-IA consistently improves SVM after
three iterations. In Table 2, the SVM-IA classifiers not only have sustaining improve-
ments but also outperform SVM-CT in most categories. In /Recreation/Outdoors and
/Arts/Photography, SVM-CT is even worse than pure SVM and the improvements are
very unstable. Although in Table 3 SVM-CT have effective improvements in most cat-
egories after CT3, the overall improvements are not stable, and the accuracy in /En-
tertainment/Movies Film is even worse than pure SVM. Figure 2 and Figure 3 further
indicate that the accuracy of SVM-IA is stably improved, but SVM-CT has unstable
accuracy performance. The reason of vastly unstable performance is that a large num-
ber of label attributes are altered in the subcategories of /Entertainment/Movies Film
in Yahoo! after cross-training process. The same situation also happened in /Recre-
ation/Outdoors and /Arts/Photography in Google. These label changes resulted in wrong
mappings between the subcategories, and would thus decreased the accuracy. Moreover,
we found that the cross-training process was very time-consuming. This makes SVM-
CT less feasible for large catalog integration.



4 Conclusions

In this paper, we have studied the effects of iterative-adapting approach to enhance the
integration accuracy. We compared our approach with SVM and SVM-CT. The exper-
imental results are very promising. It shows that our approach consistently achieves
improvements on SVM classifiers and is on average superior to cross-training that has
been proposed to improve SVM.

Several issues still need to be further discussed. First, generalizing the flat catalog
assumption to the hierarchical catalog model is of the major interest for the catalog
integration because hierarchical catalogs are more practical in real cases. Second, how
to construct a systematical mechanism combining effective auxiliaries to enhance the
power of SVM is a more difficult problem but needs further investigation. To conclude,
we believe that the accuracy of catalog integration can be further improved with the
assistance of more effective auxiliary information.
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