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1 Introduction

System modeling has the capability of discovering
nonlinear, non-obvious, and potentially useful infor-
mation and knowledge from data sets. For a given
set of input-output data, conventional system mod-
eling can be used to describe a given data set by
mathematical equations that provide potential map-
ping knowledge between input and output data, and
the model obtained is applied to predict output data
for new inputs. In terms of computational efficiency,
conventional system modeling approach is a use-
ful tool for knowledge discovery and data predic-
tion. For dealing with uncertainties, fuzzy modeling
involving fuzzy predicates for describing unknown
systems, has also been applied to notable applica-
tions, including system simulation, industrial con-
trol, and financial analysis, etc. Originally, fuzzy
modeling approach proposed by Mamdani [2], [3]
utilizes linguistic “IF-THEN” rules to establish qual-
itative relationships among the variables in a sys-
tem . The linguistic models allow the usage of in-
formation granules expressed in the form of natural
language statements and consequently make models
transparent to interpretation. However, owing to
the existence of a large gap between human knowl-
edge and linguistic rules in complex and uncertain
process, the model is hard to be optimized. On
the other hand, a great deal of research activities

have focused on the development of methods to build
fuzzy models from numerical (raw) data. One of the
most renowned data-driven fuzzy models, proposed
by Sugeno [4], [5], is based on fuzzy partition of input
space and least squares method. Since this type of
fuzzy model uses linear equations as building gran-
ules, it is efficient in computation, but it is weak in
intuitive explanation. To have both computational
efficiency and interpretation transparency, a hybrid
model that represents the consequent part with lin-
guistic granules and has a modified inference mech-
anism similar to the one given by Sugeno’s model in
[4], [5] is suggested by Sugeno and Yasukawa in [6].

While the aforementioned methods have been
widely applied, there are still some limitations need
to be pointed out. First, each model uses homo-
geneous information granules as the basic building
blocks for fuzzy models. That is, Mamdani’s ap-
proach uses linguistics statements of human and
Sugeno’s method utilizes linear equations as conse-
quent part that are derived from raw data. However,
in real world problems, linguistic statements cannot
exist for every system, especially for a highly dy-
namic and complex plant; on the other hand, the
functional consequents have a drawback that the
number of rules in the model may grow very fast.
Therefore, a heterogeneous model may be needed for
approaching the data set more precisely and provid-
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ing more flexibility. The second characteristic is that
not all the existing fuzzy models can treat both the
numerical and linguistic values as inputs. Unfortu-
nately, environments mixed numerical and linguistic
data together are frequently occurred since the in-
puts can be derived from human experts and arti-
facts. Thus, building a fuzzy model that is capable
of dealing with numerical-linguistic data becomes an
important issue.

In this paper, a novel constraint-based fuzzy mod-
eling approach is proposed. Features of the proposed
model is concluded as follows: 1) The knowledge
base of a constraint-based fuzzy model can incorpo-
rate information with different types of fuzzy pred-
icates. Under this perspective, the rule-based fuzzy
model can be recognized as a special case of the pro-
posed fuzzy models. 2) A corresponding inference
mechanism for the proposed model can deal with
heterogeneous information granules. 3) Both numer-
ical and linguistic inputs can be accepted for predict-
ing new outputs. Notably, features (2) and (3) are
consequents of constraints-based inference engine.

The remainder of this paper is organized as fol-
lows. In Section 2, constraint-based fuzzy models
are introduced. In Section 3, the main concept of a
design methodology for the constraint-based fuzzy
model is presented. The design can be done via
a two-stage process, including fuzzy clustering and
fuzzy regression. Then, simulation results are given
in Section 4 followed by some concluding remarks in
Section 5.

2 Constraint-based Fuzzy Models

Constraint-based fuzzy models use fuzzy constraints
as the knowledge components to model the real
world. The kernel of the fuzzy model is a fuzzy con-
straint network (FCN), a formal definition of FCN
and an associated reasoning method are shown in
Sec. 2.1. Then, based on these basic concepts, the
architecture and the inference mechanism of the pro-
posed fuzzy model is presented in Sec. 2.2.

2.1 Main concepts of fuzzy constraints

Much of what we know about many real-world prob-
lems can be represented as sets of constraints. For
example, in simulation, constraints serve not only as
descriptions of the system to be simulated, but also
as commands to the system telling it that certain
conditions must be satisfied. By asserting additional
constraints, the user can prod the simulated system
and observe its response. Similarly, in engineering
design, constraints represent the requirements that

the artifact being designed must satisfy. The task
of designing then becomes that of exploring design
alternatives in a solution space bounded by these
constraints.

A constraint is a construct describing a relation-
ship among one or more objects. A constraint net-
work is a collection of objects interlinked by a set
of constraints that specify relationships which must
be satisfied by the values that are assumed by these
objects. Formally, a fuzzy constraint network and
its intent may be defined as follows [1].

Definition 1. A fuzzy constraint network is a triple
(U ,X,C) where U is a universe of discourse, X is a
tuple of n non-recurring objects X1, . . . , Xn, and C
is a set of m ≥ n constraints C1(T1), . . ., Cm(Tm). In
a constraint Cj(Tj), Tj is a subtuple of X, of arity
aj , and Cj(Tj) is a (possibly fuzzy) subset of the
Cartesian product Uaj . Of the m ≥ n constraints,
there are at least n unary constraints, each object
Xi ∈ X being subject to its own unary constraint
Ci(Xi).

Definition 2. The intent of a fuzzy constraint net-
work (U ,X,C), written ΠU ,X,C, is an n-ary possibil-
ity distribution for the objects involved in the net-
work. That is

ΠU ,X,C = C1(T1) ∩ . . . ∩ Cm(Tm) (1)

where, for each constraint Cj(Tj) ∈ C, Cj(Tj) is its
cylindrical extension in the space X = (X1, . . . , Xn).

Here, the network intent is a fuzzy set of n-tuples,
each tuple giving a valuation for the n objects in
X, the membership of the tuple in the intent being
the degree to which the valuation satisfies all the
constraints in C.

Once a real world problem is modeled as a set of
constraints, physical parameters maybe interpreted
as objects of the constraint network. Finding the
possible values of objects is the main task of a rea-
soning process. In the case of fuzzy modeling, owing
to the fuzzy constraint network being considered is
single directional, a fuzzy inference method can be
performed by the marginal particularized possibility

distribution that is defined as below.

Definition 3. Given a fuzzy constraint Cl and a set
Π of fuzzy possibility distributions ΠXl,1

, . . . ,ΠXl,al
,

associated with the objects Xl,1, . . . , Xl,al
in Θ(Cl),

respectively, the marginal particularized possibility
distribution for any variable Xl,i in Θ(Cl) that is
allowed by the constraint Cl and the possibility dis-
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tribution in Π is defined by

Q (Cl,Π, Xl,i) = ProjXl,i
(Cl ∩ΠXl,1

∩ · · ·

∩ΠXl,i−1
∩ΠXl,i+1

∩ · · · ∩ΠXl,al
),

(2)

where, Θ(Cl) means the set of objects referenced by
the fuzzy constraint Cl, for all Xl,k in Θ(Cl), ΠXl,k

is the cylindrical extension of ΠXl,k
in the space

(Xl,1, . . . , Xl,al
).

The projection operation used in (2) is defined as:

Definition 4. The projection of an n-ary possibil-
ity distribution ΠX onto a subset Y = (Y1, . . . , Yk)
of the objects in X = (X1, . . . , Xn) is a k-ary possi-
bility distribution which is denoted by

ΠY = ProjY ΠX,

and defined by

πY (y1, . . . , yk) = max
z

πX (x1, . . . , xk) ,

where πY is the possibility distribution function of
ΠY and the maximum is taken over a subset Z =
{Z1, , Zl} of objects X which is complementary to
the subset Y.

The marginal particularized possibility distribu-
tion plays a key role in an inference process, that
will be elaborated in the next section.

2.2 A novel constraint-based fuzzy model

A constraint-based fuzzy model incorporates fuzzy
constraint network in the knowledge base and uses
constraint-based inference engine to infer output
while inputs are given. Consider a MISO system:
x = (x1, . . . , xn) is an n-dimensional input vector;
y is the output variable. Then, a constraint-based
fuzzy model can be defined as below.

Definition 5. A constraint-based fuzzy model
can be represented as a fuzzy constraint network
(U ,X,C), where U is a universe of discourse, X =
x × y, and C is a set of m ≥ n + 1 constraints
C1(T1, y), . . ., Cm(Tm, y). In a constraint Cj(Tj , y),
Tj is a subtuple of x. Furthermore, for each Cj(Tj , y)
in C, it can be divided into a amalgamate (denoted
as ∪̃) of a set of granules:

Cj(Tj , y) = Gj1∪̃Gj2∪̃ · · · ∪̃Gjk

= (Gj1|Ã1
) ∪ (Gj2|Ã2

) ∪ · · · ∪ (Gjk|Ãk
)

where Gjh is a fuzzy relation defined on X;

(Gji|Ãi
) = {((x̄i, yi), µ) ∈ x× y |

µ = min(Gji(x̄i, yi), Ãi(x̄i))}

is a reduced fuzzy set. The fuzzy set Ãh is called a
corresponding region of Gjh.

Notably, the constraint-based fuzzy model has
some features. The architecture of the constraint-
based fuzzy model can incorporate information with
different types of fuzzy predicates. That is, the cor-
responding inference mechanism for the proposed
model can deal with such a model. Then, both nu-
merical and linguistic inputs can be accepted for pre-
dicting new outputs. The first feature can be proved
by the following proposition.

Proposition 1. The architecture of fuzzy model
can incorporate information with heterogeneous
types.

Proof. Without loss of generality, we consider a
fuzzy system consists of fuzzy predicates with lin-
guistic and functional types. A linguistic fuzzy
model can be represented as:

S = {(Ãi, B̃i) | i = 1 . . . m}, (3)

where Ãi is an n−dimensional fuzzy set defined on
x = (x1, . . . , xn) and B̃i is a one dimensional fuzzy
set on y. For each fuzzy pair (Ãk, B̃k), which rep-
resents a fuzzy granule Gk = (Ãk, B̃k) with corre-
sponding region Ãk. Specifically, the details of the
fuzzy granule is:

Gk = {((a1, a2, . . . , an, b), µ) | µ =

min(µ
Ãk

(a1, a2, . . . , an), µ
B̃k

(b))}.

Then, C(x, y) = G1∪G2∪· · ·∪Gm. For any input vec-
tor x = (a1, . . . , an), the output ỹ can be calculated
as

ỹ = Q(C,Π, y)

= Projy
(

C ∩Πx1
∩Πx2

∩ · · · ∩Πxn

)

= πY (y1, . . . , yk) = max
z

πX (x1, . . . , xk) .

Next, we consider a fuzzy system consists of func-
tional fuzzy constraints, that can be represented as
a set of pairs such as

S = {(Ãi, fi(x)) | i = 1 . . . m}, (4)

where Ãi is an n−dimensional fuzzy set defined
on x = (x1, . . . , xn) and fi(x) is a crisp equation.
Specifically, (4) can be rewritten as

C = {(x,

∑

i Ãi(x)fi(x)
∑

Ãi(x)
) | i = 1 . . . m}.
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For the considered fuzzy constraints, the marginal
particularized possibility distribution can be de-
rived. Therefore, a constraint-based fuzzy model can
deal with heterogeneous fuzzy predicates.

Consequently, we have the following:

Corollary 1. In a constraint-based fuzzy model,

both numerical and linguistic inputs can be accepted

for predicting new outputs.

3 A Design Methodology

Based on granular computing, the main idea of a de-
sign methodology for constraint-based fuzzy model
is provided in this section. According to Zadeh’s
original paper on granular computing [7], [8], hu-
man cognition may be understood to be based on
and structured by processes of granulation, organi-

zation, and causation. Granulation is a process that
decomposes the whole concept space into parts, con-
versely, organization is the process that integrates
parts into wholes, and then, causation is a process
that associates causes with effects. Fuzzy modeling
is a process that can be mapped to organization.
During the process of organization, some character-
istics could be induced:

• The level of abstraction is risen;

• the purpose of organization of fuzzy granules
is to integrate some smaller granules into fewer
but larger ones;

• the decision of which granules should be drawn
together is based on some predefined similarity
criterion; and

• there is no direct relation between the granular-
ity of a granule and its levels of abstraction.

Thus, based on these properties, organization can
be formally defined as below.

Definition 6 (Organization). Given a set of gran-
ules G and a similarity criterion S, organization is a
process that integrates the elements of G in order to
form a new set of granules G

′ such that the following
conditions hold.

• The number of elements of G
′ is fewer than that

of elements of G; and

• the similarity criterion S is satisfied with G and
G
′.

Fuzzy modeling mainly deals with the construc-
tion of quasi-structured knowledge from unstruc-
tured data. In other words, with fuzzy modeling,
knowledge at a higher-level of abstraction is ob-
tained from a lower-level one. From a granular per-
spective, fuzzy modeling is the process of seeking
fuzzy granules at a higher level of knowledge ab-
straction that are appropriate to represent the lower-
level knowledge. In this sense, the task of fuzzy
modeling is actually a process of information orga-
nization. Specifically, a fuzzy-constraint-descriptive
model can be derived from a two-stage organization
process, that is, a granule-prototype fuzzy cluster-
ing method (GFCM) followed by a fuzzy regression
method for granules (FRG). A granular-prototype
fuzzy clustering is a fuzzy clustering technique that
uses fuzzy granules as predefined prototypes. Then,
a fuzzy regression method for granules is fuzzy re-
gression method for manipulating fuzzy granules as
inputs. The details of these two processes are elab-
orated in the next section.

4 Experimental Results

In this example, a set of 2-dimensional samples is
generated randomly to serve as the initial raw data
needed by the GFCM; then, with those granules ac-
quired through the GFCM acting as the input data,
the FRG is employed to obtain the final results.

Let us consider a set of input-output patterns gen-
erated by

xk = −1.5 + 0.05(k − 1), k = 1, 2, . . . , 61,

yk = x3
k − xk − 0.5 + rand[−1, 1], (5)

where rand[−1, 1] represents a real number ran-
domly generated in the interval [−1, 1]. By this
mechanism, we can generate 61 points between y =
x3 − x− 0.5 and y = x3 − x + 0.5.

Applying GFCM to these data, granule-prototype
constraints and similarity constraints should be de-
fined at first. The granule-prototype constraints can
be chosen from any symmetrical membership func-
tions. In this example, we utilize the following Gaus-
sian type membership function,

G(σ, c) = e−
1

2
(
‖x−c‖

σ
)2 , (6)

as the prototype of the upper-level granules.
A possible choice of the similarity constraints,

then, is defined as

maximize J(g) =
c

∑

i=1

n
∑

j=1

e−
1

2
(
‖xj−ci‖

σ
)2 . (7)
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Figure 1: The organized granules:
G1([(−1.42,−1.40), 0.5]), G2([(−0.53, 0.46), 0.5]),
G3([(0.52,−0.25), 0.5]), and G4([(1.27, 0.92), 0.5]).

Then, we can organize the sample data as the
following four Gaussian-type fuzzy granules,

G1(c,σ) = G1([(−1.42,−1.40), 0.5]),

G2(c,σ) = G2([(−0.53, 0.46), 0.5]),

G3(c,σ) = G3([(0.52,−0.25), 0.5]), (8)

G4(c,σ) = G4([(1.27, 0.92), 0.5]),

as shown in Figure 1. Figure 2 shows the contour
plot of the organized granules with original sample
data.

The resultant granules (8) will be considered as
the lower-level granules of FRG. After that, a non-
linear fuzzy equation will be derived through a gen-
eralized TSK model.

The final nonlinear fuzzy equation is shown in Fig-
ure 3. Figure 4 is the contour of the final fuzzy con-
straints.

5 Conclusions

This paper has presented a novel constraint-based
fuzzy model. In the proposed framework, knowledge
transformation process is viewed as the organization
process in granular computing. A fuzzy-constraint-
descriptive model is thus attained from two-stage
operations: fuzzy clustering for granules and fuzzy
regression. In contrast to other fuzzy modeling ap-
proaches, the approach presented in this paper has
five important aspects:

• General: The proposed model is a generalized
model. The building blocks of the fuzzy model
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Figure 2: The contour plot of organized granules
along with input-output data.

Figure 3: The final fuzzy nonlinear equation. Lo-
cal constraints are: ỹ = ([2, 0.6])x + ([1.6, 0.6]),
ỹ = ([−0.5, 0.6])x + ([0, 0.6]), and ỹ = ([1.7, 0.6])x +
([−1.2, 0.6]).
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Figure 4: The contour plot of the organized nonlin-
ear fuzzy equation and the lower-level granules.

are fuzzy constraints, which provide more ex-
pressive power than fuzzy rules. The rule-based
fuzzy models are a special case of the proposed
model is proved.

• Flexible: Constraint-based fuzzy model is het-
rogeneous, and the types of constraints are
not restricted to linear equations or fuzzy sin-
gletons. Actually, fuzzy constraints are rela-
tions among system variables, types including
fuzzy equations, inequations, fuzzy points, etc.
These different types of fuzzy constraints can be
viewed as granules with different granularity.

• Intuitive: Granular computing is highly related
to human cognition. In granular computing, we
operate on information with different levels of
granularity. Fuzzy modeling can be recognized
as organization from finer granules to coarser
ones. As a consequent, the deriving process for
constraint-based fuzzy model is intuitive.

• Unified Framework: There are two folds that
the proposed framework is unified. In one sense,
constraint-based fuzzy model can be viewed as
a generalized model of rule-based one. On the
other hand, constraint-based granular comput-
ing is also a unified formalism of various pro-
posed methods.

While the proposed approach has yielded some
promising results, considerable work remains to be
done, such as the development of a methodology for
asymmetrical fuzzy granules and the examination of
the proposed approach for practical scenarios.
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