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Abstract: This paper develops a rectifying inspection sampling plan for single specification limit products under a 
Bayesian framework with the objective of minimizing the expected total cost due to imperfect items introduced to the 
manufacturer’s production and sales systems. The model involves a two-stage decision: (1) determining the optimal sample 
size, and (2) after obtaining sampling information, taking an action that is between no more inspection and 100 percent 
inspection. The model assumes that the quality characteristic of the key component is exponentially distributed with an 
unknown mean. Using gamma distribution as the conjugate prior, a closed form decision criterion for the second stage can 
be derived, and the computational complexity will be greatly reduced. The attribute sampling model under the same 
probability distribution and cost structure is also derived and analyzed. Applications and numerical results using an LED 
electronic component for both sampling models are presented. 
 
Keywords: Bayesian decision analysis, single specification limit, variable sampling plan, attribute sampling plan, 
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1. INTRODUCTION 
 
In this paper we propose a Bayesian decision model that is useful in the quality control issue: whether an incoming lot 
should be subject to no inspection, 100 percent inspection, or acceptance sampling inspection. The total material cost to a 
producer includes both the price and the quality cost incurred by imperfect material in the producer’s production and sales 
system In particular, we consider a case of rectifying inspection sampling, in which any non-conforming units in the lot will 
be replaced with a conforming one, including the units that cause malfunction products. Rectifying inspection sampling 
model is frequently used when manufacturing costs are high (Anderson et al. 2001). Common applications of rectifying 
inspection sampling are in semiconductor manufacturing and electronic products manufacturing, where maintaining control 
of the process is difficult and individual items have relatively high cost. In such cases, suppliers are often required to 
provide an estimated number of nonconforming units in outgoing lots. These estimates can be obtained from data that were 
collected during acceptance sampling. Greenberg and Stockes (1992) provides an efficient predictor for nonconforming 
units using the information obtained in rectification. 

It is well known that the items produced by the same production process vary in quality due to some inevitable random 
factors in production, such as variation in materials and human and machine operations (Tang, 1992). The distribution of the 
quality characteristic of items is defined as the process distribution, which characterizes the performance of the produced 
items. Bayesian inference provides a formal mechanism for a producer to assess the unknown process distribution of the 
purchased items using his experience with a supplier’s items and the sampling results obtained by in-plant inspections. 
Furthermore, Bayesian approach is capable of integrating the cost-quality relations with corresponding probabilities, which 
will be updated by the current information. In designing a Bayesian inspection sampling procedure, it is more convenient to 
use a conjugate prior distribution, since the computational complexity will be greatly reduced. 

Deming (1982) discussed an (n, c) rectifying attributes sampling plan relative to two different cost setups, ( 21 , kk ), 

where n is the sample size, c is the acceptance number, 1k  is the cost per unit to inspect an item, and 2k  is the cost per 
unit of a nonconforming item that is either placed in an assembly that fails or subsequently fails after entering the stream of 
commerce. Usually, the 2k  cost is much higher than the 1k  inspection cost. Moskowitz and Tang (1992) used the cost 
structure proposed by Schmidt et al. (1974 ) to develop a Bayesian variables acceptance sampling model with the following 
probability assumptions: the performance variable has a normal distribution with an unknown mean, which is assumed 
normally distributed as well. Tagaras (1994 ) studied a similar cost structure under the same probability assumptions, but 
assumed that the inspection was destructive, and thus the cost of inspection per unit would be greater than the cost of 
rejection per unit.  Yeh and Van (1997) developed a Bayesian double-variable sampling model with the polynomial loss 



function under the same probability assumptions. 
The purpose of this paper is to develop a rectifying inspection sampling procedure based on an economical 

consideration that can be applied to the case of single specification limit. Our literature review indicates that many studies 
were on double specification limit, but very few were on single specification limit. The models developed in this paper use 
the same cost structure as Deming’s model, and contain two procedures: a variable sampling procedure and its 
corresponding attribute sampling procedure. 

The remainder of this paper is organized as follows. In section 2, the variable and attribute sampling models are 
formulated based on the Bayesian decision rule. Section 3 presents an application example and numerical results. Section 5 
concludes the paper. 

 

2. BAYESIAN DECISION MODEL 

 
This paper develops rectifying inspection sampling procedures for single specification limit products using a Bayesian 
approach with the objective to minimize the expected total cost. The procedures are similar to Deming’s model (1982), but 
differ in the decision-making approach and the use of sampling information. Deming’s model has been discussed in the 
models of 0-1 attribute (Lorezen, 1985; Papadakis, 1985; Barlow and Zhang, 1986; Chyu and Wu, 2002) and double 
specification limits (Chyu and Yu, 2006). This model uses rectifying inspection; rectifying inspection refers to a procedure 
whereby a lot rejected by sampling inspection is 100% inspected. It is also assumed that this inspection is 100% effective, 
and all nonconforming items discovered during inspection will be replaced by conforming units. In addition, if a 
nonconforming item is placed on the assembly line and results in a bad product, the product can be disassembled and the 
nonconforming item will be replaced with a conforming item. We furthermore assume that a spare lot comes along with the 
purchased lot, and the items in both lots will have the same quality. If a nonconforming item is found, then extra inspections 
on the items in the spare lot must be done until a conforming item is found. Such inspection cost will be charged to the 
manufacturer. 

The model involves a two-stage decision. In the first stage, the objective is to determine the optimal sample size. After 
observing the sampling outcome, the second-stage objective is to decide whether to stop inspection and send the remaining 
items of the lot into assembly, or to continue to inspect the remainder of the lot. We refer to the decision “stop inspection” as 
“ 1a ,” and the decision “inspect all” as “ 2a .” 

The following are notations used in this paper: 
N : total number of components in the lot 
n : sample size 
x  : sampling data, 1( ,..., )nx x x=  
y : number of nonconforming items in the sample 

1k  : inspection cost per item 

2k  : product failure cost per item 

1a  : “stop inspection” decision at the second stage 

2a  : “inspect all” decision at the second stage 
( )R y  : number of extra inspections to obtain y conforming items 

N nY −  : number of nonconforming items in the remainer of the lot 

( )N nR Y −  : number of extra inspections to obtain N nY −  conforming items 

Assume that at the second stage of the model, the sampling information are ( , ,n x y ). The loss due to decisions “ 1a ” 

and “ 2a ” are as follows, respectively. 
 

1 1 1 2 1( , , , ) ( ) ( )N n N nL a n x y n k R y k Y k R Y k− −= ⋅ + ⋅ + ⋅ + ⋅                          (1) 

2 1 1 1 1( , , , ) ( ) ( ) ( )N nL a n x y n k R y k N n k r Y k−= ⋅ + ⋅ + − ⋅ + ⋅           (2) 
 

If we take the expected loss as the criterion to select action, then we conclude the following: 
     if 2 1( | , , ) ( )N nE Y n x y k N n k− ⋅ ≤ − ⋅ , action 1a  is not inferior to action 2a . Otherwise, action 2a is taken. According 



to the Bayesian decision theory, the optimal sample size must satisfy the following equation: 
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2.1 Variable Sampling Model 
 
The model developed in this section is an extension of Deming’s model for single specification limit case. For simplicity, 
we will focus the study on the lower bound case; i.e., ( , )u ∞ . The other case (0, )u  can be solved by a similar technique. 

 The components in the purchase lot are assumed to be manufactured under the same statistical quality control 
process and have the following distributions, 

1 2, ,..., | ~ . . . + exp( )NX X X W w i i d b w= , where b > 0 is a guaranteed performance value. 
 

Under this assumption, the probability of a component being conforming given W = w is 
'P( ) Pr{ | } u w

kw X u b W w e−= ≥ − = = , where 'u u b= − . 
The unconditional probability is '( ) u WP W e−= , which is a random variable. If the prior distribution of W is Gamma ( ,α β ), 
the probability of a component being conforming is 

'[ ( )] [ ]u WE P W E e−= =
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The cumulative distribution function (cdf) of P(W) is 
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In addition, the probability density function (pdf) of P(W) is 
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Applying the Bayes’ theorem, we can obtain that if W ~ Gamma( ,α β ), then the posterior of W depends on the simpling 
data, ( 1,...., nx x ), and the total number of nonconforming units, y, only through the sample size and the sum of performance 
measurements of the samples. That is, 

1 1( | ,..., , ) ( | ,..., ) ( | , )n nh w x x y h w x x h w n s= = , where 1 ... ns x x n b= + + − ⋅  and | ,  ~  ( , )W n s Gamma n sα β+ + . 
 

By algebraic operations, the expected total cost corresponding to sample size n (equation (3)) can be simplified as follows. 
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1 21 ( ( ) | , ) /E P W n s k k− ≤ ; otherwise, action 2a  will be preferred. It is clear that 1 ( ( ) | , )E P W n s−  decreases as the value 
of s increases. After applying some algebraic operations, we can conclude the following: 

If s > * '
1
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, 1a  is taken; otherwise 2a  will be taken, where ( )
1

1 21 / nk k α +Δ = − . 

 
2.2 Computational Issue 

 
It is difficult to accurately compute the integral part of equation (7) because the sum of the performance variables in the 

samples, 
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By letting ( )Q Sβ β= ⋅ + , the transformed random variable Q has a distribution ( , )Beta nα  as shown below. 
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The integral part can be transformed into the following equation, and accurately computed by the Simpson method with 3/8 
rule. 
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. According to our computational results, the function C(n) behaves like U-shape as a whole, 

but its values fluctuate slightly up and down in the local sense. Therefore, a good statregy to find an optimal sample size and 
the minimum expected total cost is the following: 

Start with k = 0. Compute C (n =10 k⋅ ) for k = 1, 2, … Stop when the value of C(10 k⋅ ) increases three times 
consecutively or N ≤ 10 k⋅ . Find the lowest value of C((10 k⋅ ). The sample size corresponds to the minimum cost in 
the range [10 ( 1)k⋅ − ),10 ( 1)k⋅ + )] is the solution wanted. If k = 0, the search range becomes [0, 10]; on the other 
hand, if k = N/10, then the search range becomes [N-10, N]. 

 
2.3 Attribute Sampling Model 
 
In this section, a 0-1 attribute sampling model based on the same probability distribution and cost structure is derived. In 
general, the attribute sampling model carries less information but is simpler to use than the variable sampling model. 

Let 1kY =  if the kth component is nonconforming and 0kY =  otherwise. Clearly, the probability of a component 

being conforming is Pr{ 0kY = } = Pr{ 'kX u> } = ( ( ))E P W  = 
'u

α
β

β
⎛ ⎞
⎜ ⎟+⎝ ⎠

. 

The cdf and the pdf of P(W) were given in equations (5) and (6), respectively. Let 
1

n

k
k

Y Y
=

= ∑  and y is the realization 

number of Y. Clearly, the conditional distribution of Y , given W = w, is Binomial (n, P(w) = 'u we− ). For simplicity, we 
denote P(W) as P. The following properties of ( | , )E P n y  are useful in analyzing the attribute sampling model and 
reducing computations. 
 
Property 1: ( | , )E P n y  increases in n with y fixed. 

Proof: 1

0
( | 1, ) ( | 1, )E P n y p f p n y dp+ = ⋅ + =∫ = 

2( | , ) ( | , )
( | , )

E P n y E P n y
E P n y

≥ , since 2 2( | , ) ( ( | , ))E P n y E P n y≥ . 

Thus, ( | , )E P n y  increases in the sample size n with y fixed. 
 
Property 2: ( | , )E P n y  decreases in y with n fixed. 

Proof: (1 | , )( | , 1) ( | , )
((1 ) / | . )
E P n yE P n y E P n y

E P P n y
−

+ = ≤
−

. Because (1 ) /P P−  and P  are negatively correlated, 

(1 | , )E P n y− = ( (1 ) / | , ) ( | , ) ((1 ) / | , )E P P P n y E P n y E P P n y⋅ − ≤ ⋅ − . 
 

Similarly, by algebraic operations, the objective function value of the attribute model corresponding to sample size n is 
simplified as follows. 
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By property 2, if 1 21 ( | ,0) /E P n k k− ≥ , then action 2a  is taken regardless of the value of y. If 1 21 ( | , ) /E P n n k k− ≤ , 
then action 1a  is taken regardless of the value of y. However, if 1 21 ( | ,0) /E P n k k− ≤  and 1 21 ( | , ) /E P n n k k− > , there 
exists a critical value c*, 0 ≤ c* ≤ n, such that action 1a  is taken when 0 ≤ y≤ c*, and action 2a  is taken when y > c*. In 
addition, according to property 1, as sample size grows, c* does not decrease. Thus, properties 1 and 2 are helpful in 



facilitating the computations in the last part of equation (11). Property 3 assists in checking the accuracy of the 
computations. 

After some algebraic operations, we obtain ( | , )E P n y = 
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where ( )wf q  has the form of equation (6) and Q is beta (a, b). Such transformations will facilitate the computations when 
the Simpson’s 3/8 rule is applied to the last part of equation (11). Finally, the algorithm to find the optimal sample size in 
section 2.2 can also be applied to this attribute sampling model. 

 
3. APPLICATIONS AND NUMERICAL RESULTS 

 
A certain electronic product contains an electronic device, which functions as a light signal. The light strength of this device 
must meet the specification (2.0, ∞) K-lumin. Relevant data of this electronic device manufactured by supplier A is as 
follows: 
The production process centers the quality characteristic measurement at 2.1883 K-lumin. The center of the process is 
subject to fluctuations due to machine or human operations, and the standard deviation is estimated to be 0.06281 K-lumin. 
Collected information shows that the performance measurements of the devices manufacured by supplier A have never 

fallen below b = 1.98 K-lumin. Moreover, the statistical distribution plot indicates that choosing the form, 
x b

α
β

β
⎛ ⎞
⎜ ⎟+ −⎝ ⎠

, as 

the tail probability for the performance measurement of a device (i.e., Pr{ jX x> }), is acceptable. Thus, we take the 

probability model in section 2.1 for the quality characteristic of the items. Under this assumption, 1E
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 =
2

2( 1) ( 2)
β

α α− ⋅ −
= 0.06281. Using the numerical method, we obtain 13α ≈  and 

2.5β ≈ . The probability of a device being conforming is ( ( ))E P W = 0.9016. Furthermore, we suppose N = 600, k1 = 10.2 , 
and k2 = 91.5. The ratio would then be 1- k1/k2 = 0.89 < 0.9016. Using the variable sampling model (see Table 3.1), the 
optimal sample size n* = 39, and the critical value b + *s = 2.1413 < 2.1883. If the average performance measurement of 
the samples b+ 2.1413s ≤ , then no more inspection should be made; otherwise, the remainder of the lot should be inspected. 
Moreover, if the attribute sampling model is used, the acceptance criteria are ( *, *n c ) = (44, 7). The sample size of the 
attribute sampling model is usually larger than that of the variable sampling model because the latter carries more sampling 
information than the former. The expected cost per item under the variable sampling model is $9.847, which is less than that 
under the attribute sampling model, $10.10. 

Suppose another supplier B has a production equipment which can manufacture items with guarranteed quality 
characteristic value b = 1.975 K-lumin. In order to provide the same conforming probability as supplier A, supplier B 

centers his production process measurement at b + 1 2.253E
W
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. Such a machine parameter setting may incur more 

set-up cost. The variation (standard deviation) of the process center is estimated to be 
1/ 21( )Var

W
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.0982. Furthermore, 

stastistical analysis on the sampling data indicates that the probability model assumption of section 2.1 is acceptable as well. 
Table 3.2 shows that the acceptance criteria are ( *, *)n b s+  = (33, 2.174), with the expected cost per item equal to $9.478, 
which is less than supplier A. If the purchase prices of both suppliers are the same, then supplier B should be chosen based 
on an economical point of view. 

 
Table 3.1 Sampling procedures for process centered at 2.188 with variation 0.0628 and b = 1.98 
 

 Variable sampling model Attribute sampling model 
N Expected cost/unit n* *s  *b s+ Expected cost/unit n* c* 



600 9.847 39 0.161 2.141 10.100 44 7 
700 9.832 43 0.162 2.142 10.084 53 8 
800 9.819 47 0.163 2.143 10.069 71 10 

 
Table 3.2 Sampling procedures for process centered at 2.253 with variation 0.0982 and b = 1.975 
 

 Variable sampling model Attribute sampling model 
N Expected cost/unit n* *s  *b s+ Expected cost/unit n* c* 

600 9.478 33 0.199 2.174 9.732 35 6 

700 9.462 36 0.200 2.175 9.717 52 8 

800 9.449 40 0.202 2.177 9.705 70 10 

 
4. CONCLUSION 

 
In this paper, a rectifying inspection sampling model for single specification limit based on Bayesian decision thoery is 
developed. The objective of this model is to minimize the expected total cost due to imperfect items introduced into the 
manufacturer’s production and sales systems. Moreover, this model is useful in selecting the best supplier. There has been a 
great deal of research on acceptance sampling procedures but very few consider the use of Bayesian approach in the case of 
single specification limit. In this study, the quality characteristic of the key component is assumed to be exponentially 
distributed with an unknown mean. Using gamma distribution as the conjugate prior, the computational complexity of this 
model will be greatly reduced, and the decision criteria can be obtained shortly. Such makes the model useful in practical 
application. Meanwhile, the attribute sampling model under the same probability distribution and cost structure is derived 
and compared with the original variable sampling model. Numerical results suggests that the variable sampling model be 
used based on an economical view point, even though the attribute sampling model is simpler and easier used in practice. 
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