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Abstract 
This paper presents a new behavior classification system 
for analyzing human movements directly from video 
sequences. First of all, we propose a triangulation-based 
method to transform each action sequence into a set of 
symbols.  Then, for analyzing the human behavior via 
those strings representation, we propose a boosted string 
representation method to extract important string features 
for accurately analyzing and recognizing different action 
sequences.  The boosted method not only can solve the 
problem of time warping, but also can reduce the error 
effects when some postures are wrongly coded into 
symbols. Since the Adaboost algorithm is proposed for 
solving two-class problems, we use the error coding 
concept to modify the Adaboost algorithm such that 
multiple human action events can be well solved.  Then, 
each action can be well recognized by its correspondence 
boosted classifier. Experiment results prove that the 
proposed method is a robust, accurate, and powerful tool 
for human movement analysis. 
1. Introduction 
The analysis of human actions [3]-[4] is important and can 
be applied in various application domains like 
human-computer interaction systems, video retrieval, video 
surveillance, and so on.  There have been many 
approaches proposed for tackling problems in video-based 
human action analysis. For example, Aggarwal et al. [4] 
used multi-layer finite state automata (FSA) to model 
human interactions. Cucchiara et al. [7] used a 
probabilistic projection map to model postures and 
performed frame-by-frame posture classification to 
recognize human behavior. In [12], Wada et al. used 
nondeterministic finite state automata (NFA) to analyze 
multi-object behavior recognition.  The advantage of FAS 
approach is that it doesn’t need a large set of data for 
model training. However, the number of states and the 
transitions between states often needs manual efforts to be 
properly settled. 

Context free grammar is another good tool to analyze 
semantic events from videos. For example, in [2], Ivanov 
et al. used a context-free grammar parsing scheme to 
analyze video targets like persons or cars. In [11], Ogale et. 
al used multi-view training videos to automatically create a 
view-independent probabilistic context-free grammar to 
recognize human actions. In [13], Brand uses a simple 
non-probabilistic grammar to recognize human behaviors 
from videos. In addition, Kojima et al. [14] used a concept 
hierarchy for recognizing single-person behaviors by 

translating human actions to natural language-based 
descriptions. The difficulty in the context-free grammar 
approach is how to transform video images into semantic 
descriptors. 

Hidden Markov model (HMM) [8] is another 
commonly-used stochastic method for human action 
analysis. In [1], Oliver et al. used HMMs for classifying 
the interactions between humans into different types. 
Nguyen et al. [5] used the abstract hidden Markov model 
and objects’ trajectories to recognize human behaviors.  
In [6], Navaratnam et al. used HMM and a set of 2D 
templates created from a 3D model for 3-D human body 
pose recovering.  A serious problem related to HMMs is 
how to specify or learn the HMM model structure. Usually, 
human actions have different spatial-temporal scaling 
changes. The change will make the construction of an 
accurate state transition graph and the estimate of model 
parameters become very difficult. In addition, human 
actions have many unexpected variations. If these 
unexpected variations are fed into HMM, wrong 
recognition results will be produced. 

This paper presents a boosting method for modeling 
and recognizing actions directly from videos. First of all, 
we use a triangulation-based method [10] to convert a 
human action sequence to a set of symbols. Then, a novel 
hierarchical histogram representation method is proposed 
to generate a bank of string features for effectively 
analyzing human actions. Usually, a person cannot perform 
the same behavior with the same speed at different times.  
Our proposed string hypothesis has good ability to tackle 
the above time-warping problem.  In addition, different 
initial statuses of action events will also affect the accuracy 
of event recognition. Since the representation does not 
create any state transition graph, our method can well 
avoid the errors if state conditions or state transitions are 
wrongly set. After that, we use an error correction concept 
to modify the original Adaboost algorithm so that a 
multi-class classier can be trained. The trained multi-class 
classifier can learn important scaling-invariant feature and 
thus can well classify any action sequence even if they 
have different temporal scaling changes. In addition, the 
classifier has higher tolerances to the coding errors of 
frames. Experiment results demonstrate the feasibility and 
superiority of the proposed approach for analyzing human 
behavior with string representation. 
2. Deformable Triangulation Technique for 

Frame-to-Symbol Converting 
To better convert an action sequence into a set of symbols, 
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we use the constrained Delaunay triangulation technique 
[15] to make each posture which extracted from sequence 
into triangular meshes. Then we adopt a dfs (depth-first 
search) scheme to extract its skeletal features from the 
triangulation result. Fig. 1 shows an example of the 
triangulation result of a human posture. 

   
(a)        (b)  

Fig. 1 Triangulation result of a body posture; (a) Input 
posture; (b) Triangulation result of (a).  

 
Fig. 2: Polar Transform of a human posture. 

After triangulation, we project a posture sample onto 
a log-polar coordinate and label each mesh.  Then, we can 
define a centroid context to finely represent this posture.  
Assume all postures are normalized to a unit size.  We use 
m to represent the number of shells used to quantize the 
radial axis and n to represent the number of sectors that we 
want to quantize in each shell. Fig. 2 shows an example of 
polar transform with 3 shells and 8 sectors.  For the 
centroid r of the triangular mesh of a posture, we construct 
a vector histogram ( (1),r rh h=  ..., ( ),rh k …, ( )rh mn ), in 
which ( )rh k  is the number of triangular mesh centroids 
in the kth bin when r is considered as the origin, i.e., 
   ( ) #  { |  ,  ( - )  }k

rh k q q r q r bin= ≠ ∈ , (1) 
where kbin  is the kth bin of the log-polar coordinate. 
Then, given two histograms, ( )

ir
h k  and ( )

jrh k , the 
distance between them can be measured by  

   
1

1( , ) 1- min{ ( ), ( )}
bin

i j

K

i j r r
kmesh

C r r h k h k
N =

= ∑ , (2) 

where binK  is the number of bins and meshN  denotes the 
number of meshes calculated from a posture. Using Eqs. (1) 
and (2), we can define a centroid context to describe the 
characteristics of an arbitrary posture P.   
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Fig. 3: Body component extraction: (a) triangulation resut; 
(b) Skeleton of (a); and (c) centroids of different parts 
(determined by removing all the branch nodes). 

To define the centroid context of P, we need to 
derive a skeleton of P using a graph search. The skeleton 
extraction method can be found from our previous 
work[10].  Then, from P, we can get its skeleton P

dfsT . As 
shown in Fig. 3, (b) is the skeleton feature of P. Here, we 
call a node a branch node if it has more than one child.  
By this definition, there are three branch nodes in Fig. 3(b), 
i.e., 0

Pb , 1
Pb , and 2

Pb . The branch nodes are the key 
points used to decompose P into different body parts, such 
as the hands, feet, or torso. If we remove all the branch 
nodes from P

dfsT , it will be decomposed into different 

branch paths P
ipath . For example, in Fig. 3(b), if we 

remove 0
Pb  from P

dfsT , two branch paths will be formed, 

i.e., one from node 0n  to 0
Pb  and one from 0

Pb  to node 

1n . The first path corresponds to the head and neck of P, 
and the second corresponds to the left hand of P. Given a 
path P

ipath , we collect a set of triangular meshes P
iV  

along it. Let P
ic  be the centroid of the triangular mesh 

closest to the center of the set of meshes. Given a centroid 
P
ic , we can obtain its corresponding histogram ( )P

ic
h k  

using Eq.(1). Assume that the set of these path centroids is 
PV . Based on PV , the centroid context of P is defined by: 

0,...,| |-1
{  }P P

ic i V
P h

=
= , 

where | |PV  is the number of elements in PV . Given two 
postures, P and Q, the distance between their centroid 
contexts is measured by 
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2| | 2 | |
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where P
iw  and Q

jw  are the area ratios of the ith and jth 
body parts residing in P and Q, respectively. Based on 
Eq.(3), an arbitrary pair of postures can be compared. Then, 
a clustering technique can be used to extract a set of key 
postures from different action sequences. Then, with the set 
of key postures, we can convert each action into a string.  
3. Novel String Hypothesis Generator 
Assume that S(p) is a string generated from an action 
sequence.  In order to deal with different spatial-temporal 
scaling changes, coding errors, beginning symbols, and 
noise, we present a novel method to generate a bank of 
hypotheses for string classification. Assume that I is the set 
of key postures. The number of key postures in I is M. A 
hypothesis is a string histogram, which accumulates 
symbol-to-symbol patterns appearing in S(p), generated 
under different orders, sampling rates, and quantization 
levels. The first-order hypothesis is generated by counting 
the repeated pattern of symbol-to-itself with the sampling 
rate 1i  and quantized by d, i.e.,    

1 1 1 1 1( )  #{ | ( )   &  ( ) }/d
if S x p S p x S p i x d= = + =
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for all symbols 1x I∈ ,where 1i  and d +Z∈ . The 
second-order hypothesis is created for capturing the 
relations between pairs of symbols to more accurately 
analyze action sequences and defined as follows, 

1 1 2 1 1 2( , )  #{ | ( )   &  ( ) }/d
if S x x p s p x s p i x d= = + = ,  (5) 

where 1 2 and x x I∈ , and 1i  and d +Z∈ . The general 
form of string hypothesis can be extended to the Kth order 
using the form: 

1 2 -1, ,..., 1 2 1 1 2

1 2 -1

( , ,..., )  #{ | ( )   &  ( )  & ..... &

                                          ( ... ) }/ ,
K

d
i i i K

K K

f S x x x p s p x s p i x

s p i i i x d

= = + =

+ + + + =
 (6) 

where 1 2,  ,  ...,  and Kx x x I∈ , and 1i , 2i , …, -1Ki , and d 
+Z∈ .  Then, using Eqs.(4)-(6), a bank of string 

hypotheses can be generated.  Each hypothesis is a weak 
classifier for classifying action events into different events.  
In Section 4, we will use the Adaboost algorithm to learn a 
stronger classifier from the set of weak classifiers.  
4. Event Classification with Adaboost 
In this section, the original Adaboost algorithm is first 
introduced.  Then, details of the multi-class classier will 
be proposed in Section 4.2.  
4.1 Single Event Classification Using Adaboost 

Assume that there is a string S which denotes an 
action event. Then, we can generate a set Ω  of string 
features to represent this action event using Eq.(6).  For 
convenience, we use if S  to denote the ith feature in Ω . 
For each if S , we can use a indexing technique to convert 
it into a feature vector with the length il .  Similarly, 
given an unknown string x, we can also generate different 
string features where the ith feature in x is if x .  Then, 
the dissimilarity between if S  and if x  is calculated by  

1 1
( ,  ) ( ) exp(| ( ) - ( ) |) ( ) exp(| ( ) - ( ) |)

i il l

i i i i i i i i
j j

d f S f x f S j f S j f x j f x j f S j f x j
= =

= +∑ ∑ .(7) 

Then, given Np training sequences of the same action event, 
there are totally |Ω |Np string features generated for event 
classification. These features form a bank of weak 
classifiers.  The Adaboost algorithm uses an iterative 
scheme to gradually improve the ability of the learned 
stronger classifier to classify action events. 
 At each iteration t, a “good” weak classifier is 
selected and added in turn to form a strong classifier which 
is a weighted sum of individual selected weak classifiers. 
The selected weak classifier ( )th x  is the one which has 
the minimum classification error tε  when the feature tf  
is selected among the bank of features.  At the tth step, 
the Adaboost algorithm combines the weak classifiers 
h1, ..., ht to form the strong classifier tH  using the weight 

tα  by the form   0.5 ln  ((1- ) / )t t tα ε ε= .  Thus, the tth 
strong classifier tH  has the form: 

-1
1

t

t i i t t t
i

H h H hα α
=

= = +∑ . 

Assume that there are N training samples. Details of the 
Adaboosing algorithm is described as follows. 
AdaBoosting Algorithm 
Initially assign uniform weights 0 1/iw N=  for all x.   
At each iteration t:  
1. Find the best weak classifier with ( )th x with the error 

tε  based on tW  and get t t t
1 = ln ((1- )/ )
2

α ε ε ; 

2. Get the hypothesis -1t t t tH H hα= + ; 

3. +1 exp(- ( ) )t
i t i iw H x y=  and normalize it by +1

i=1
=1

N
t
iw∑ ; 

Output the final hypothesis 
1

( )  [  ( ) ]
T

i t t i
t

H x sign h xα
=

= ∑ . 

4.2 Multiple Event Classification 
For tackling the multiple-class problem, we modify the 
error correction concept [16] to simplify the multi-class 
problems into a series of binary classification problems. 
Assume that there are N event categories.  Then, for each 
event, we can train its stronger classifier Hi(x) for i=1, …, 
N.  Then, we can create a weight iW  to code the ith 
action event.  Assume that there are c  action events i

ke  
for training iW  to represent the ith event category.  Then, 
the jth bit ijW  of iW  can be decided by 

1

1 ( ( ))
c

i
ij j k

k
W sign H e

c =

= ∑ . (8) 

Then, iW  becomes a histogram recording different 
contributions of Hj to the event category Ei.  Then, the 
similarity between x and Ei can be measured by  

1

( ,  ) ( ( ))
N

i ij j
j

similarity x E W sign H x
=

= ∑ .  (9) 

Then, the correct type of x can be decided by 
        ( ) arg max ( ,  )

i
iE

Type x similarity x E= . 

5. Experiment Results 
To analyze the efficiency and effectiveness of the proposed 
approach, we created a large database which includes ten 
types of action events. For each type, thirty action 
sequences are included. In the first set of experiments, the 
performances of our proposed method against different 
temporal-scaling changes, beginning states, and coding 
error rates were examined.  Usually, a person cannot 
perform the same behavior with the same speed at different 
times.  Our proposed string hypothesis generator has good 
ability to tackle the above time-warping problem.  In 
addition, different initial statuses of action events will also 
affect the accuracy of event recognition.  The symbol 
errors will also affect the accuracy of action event 
recognition.  Table 6 shows the accuracy analyses when 
different environmental variations happen. Clearly, no 
matter how the symbol error rate is, our method still 
performs well to recognize all the input action sequences.  
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Table 4: Accuracy analyses when actions have 
temporal-scaling changes, frames shift, or errors. 

Sampling Accur. Shift Accur.(%) Error Rate Accur. 
rate=0.8 95.73 5 95.7 10% 96. 83
rate=1.2 93.28 10 94.38 20% 95.41
rate=1.5 92.81 20 94.21 30% 93.12
rate=2 90.73 30 94.17 40% 94.32

Table 5: Accuracy comparison of event recognition 
between our method and HHM. 

Actions Gym. Walk Squat Stoop Sitting 
Boosting 95.9 97.2 95.3 98.4 99.6 
HMM 85.79 88.5 89.7 90.62 91.57 

   
(a) Frame #0       (b) Frame #152        

Fig. 4: A video including multiple action events. (a) 
Walking event. (b) Stooping event. 

 
(a)               (b) 

Fig. 5: Result of multiple event recognition. (a) Result of 
posture recognition. (b) Result of action event recognition. 

In the second set of experiments, we used the real 
action video sequences to test our proposed method. In 
addition, the HMM method were implemented for 
comparisons.  Table 5 lists the accuracy comparison 
between our method and HMM.  Clearly, our method 
performs much better than HMM. In addition to recognize 
single action event, our method can also recognize multiple 
action events in the same video sequence.  Shown as Fig. 
4, there is a video sequence beginning with a walking event 
(see (a)), then a stooping event (see (b)), and ending with a 
walking one.  The video sequence can be decoded into a 
series of postures.  Then, ten key postured were extracted 
for recognizing these postures.  Fig. 5(a) shows the set of 
key postures. Then, we can convert this video sequence 
into different symbols. Clearly, if only postures are used to 
recognize the behaviors, many errors will happen like Fig. 
5(b). The errors can be avoided if our proposed method is 
adopted. Then, a smooth curve was obtained and shown in 
Fig. 5(c). Clearly, our method can well recognize any video 
sequences even though they include multiple action events. 

 
Fig. 6: Retrieval result of walking event. 

Our proposed method also can be used to retrieve 
video sequences.  Fig. 6 shows the retrieval result when a 

walking action is queried. After hundreds of query tests, 
the average accuracy of action retrieval is 97.5%. All the 
above results have proved that the proposed boosting 
method is a robust, accurate, and powerful tool for action 
event analysis. 
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