
Boosted String Representation and its Application to Video Surveillance
Yung-Tai Hsu and Jun-Wei Hsieh*

Department of Electrical Engineering, Yuan Ze University,
135 Yuan-Tung Road, Chung-Li 320

Tel:886-3-463-8800 Ext. 2430 Fax:886-3-463-9355
*shieh@saturn.yzu.edu.tw

Abstract
This paper presents a new behavior classification system
for analyzing human movements directly from video
sequences. First of all, we propose a triangulation-based
method to transform each action sequence into a set of
symbols. Then, for analyzing the human behavior via
those strings representation, we propose a boosted string
representation method to extract important string features
for accurately analyzing and recognizing different action
sequences. The boosted method not only can solve the
problem of time warping, but also can reduce the error
effects when some postures are wrongly coded into
symbols. Since the Adaboost algorithm is proposed for
solving two-class problems, we use the error coding
concept to modify the Adaboost algorithm such that
multiple human action events can be well solved. Then,
each action can be well recognized by its correspondence
boosted classifier. Experiment results prove that the
proposed method is a robust, accurate, and powerful tool
for human movement analysis.
1. Introduction
The analysis of human actions [3]-[4] is important and can
be applied in various application domains like
human-computer interaction systems, video retrieval, video
surveillance, and so on. There have been many
approaches proposed for tackling problems in video-based
human action analysis. For example, Aggarwal et al. [4]
used multi-layer finite state automata (FSA) to model
human interactions. Cucchiara et al. [7] used a
probabilistic projection map to model postures and
performed frame-by-frame posture classification to
recognize human behavior. In [12], Wada et al. used
nondeterministic finite state automata (NFA) to analyze
multi-object behavior recognition. The advantage of FAS
approach is that it doesn’t need a large set of data for
model training. However, the number of states and the
transitions between states often needs manual efforts to be
properly settled.

Context free grammar is another good tool to analyze
semantic events from videos. For example, in [2], Ivanov
et al. used a context-free grammar parsing scheme to
analyze video targets like persons or cars. In [11], Ogale et.
al used multi-view training videos to automatically create a
view-independent probabilistic context-free grammar to
recognize human actions. In [13], Brand uses a simple
non-probabilistic grammar to recognize human behaviors
from videos. In addition, Kojima et al. [14] used a concept
hierarchy for recognizing single-person behaviors by

translating human actions to natural language-based
descriptions. The difficulty in the context-free grammar
approach is how to transform video images into semantic
descriptors.

Hidden Markov model (HMM) [8] is another
commonly-used stochastic method for human action
analysis. In [1], Oliver et al. used HMMs for classifying
the interactions between humans into different types.
Nguyen et al. [5] used the abstract hidden Markov model
and objects’ trajectories to recognize human behaviors.
In [6], Navaratnam et al. used HMM and a set of 2D
templates created from a 3D model for 3-D human body
pose recovering. A serious problem related to HMMs is
how to specify or learn the HMM model structure. Usually,
human actions have different spatial-temporal scaling
changes. The change will make the construction of an
accurate state transition graph and the estimate of model
parameters become very difficult. In addition, human
actions have many unexpected variations. If these
unexpected variations are fed into HMM, wrong
recognition results will be produced.

This paper presents a boosting method for modeling
and recognizing actions directly from videos. First of all,
we use a triangulation-based method [10] to convert a
human action sequence to a set of symbols. Then, a novel
hierarchical histogram representation method is proposed
to generate a bank of string features for effectively
analyzing human actions. Usually, a person cannot perform
the same behavior with the same speed at different times.
Our proposed string hypothesis has good ability to tackle
the above time-warping problem. In addition, different
initial statuses of action events will also affect the accuracy
of event recognition. Since the representation does not
create any state transition graph, our method can well
avoid the errors if state conditions or state transitions are
wrongly set. After that, we use an error correction concept
to modify the original Adaboost algorithm so that a
multi-class classier can be trained. The trained multi-class
classifier can learn important scaling-invariant feature and
thus can well classify any action sequence even if they
have different temporal scaling changes. In addition, the
classifier has higher tolerances to the coding errors of
frames. Experiment results demonstrate the feasibility and
superiority of the proposed approach for analyzing human
behavior with string representation.
2. Deformable Triangulation Technique for

Frame-to-Symbol Converting
To better convert an action sequence into a set of symbols,

 2

we use the constrained Delaunay triangulation technique
[15] to make each posture which extracted from sequence
into triangular meshes. Then we adopt a dfs (depth-first
search) scheme to extract its skeletal features from the
triangulation result. Fig. 1 shows an example of the
triangulation result of a human posture.

(a) (b)

Fig. 1 Triangulation result of a body posture; (a) Input
posture; (b) Triangulation result of (a).

Fig. 2: Polar Transform of a human posture.

After triangulation, we project a posture sample onto
a log-polar coordinate and label each mesh. Then, we can
define a centroid context to finely represent this posture.
Assume all postures are normalized to a unit size. We use
m to represent the number of shells used to quantize the
radial axis and n to represent the number of sectors that we
want to quantize in each shell. Fig. 2 shows an example of
polar transform with 3 shells and 8 sectors. For the
centroid r of the triangular mesh of a posture, we construct
a vector histogram ((1),r rh h= ..., (),rh k …, ()rh mn), in
which ()rh k is the number of triangular mesh centroids
in the kth bin when r is considered as the origin, i.e.,
 () # { | , (-) }k

rh k q q r q r bin= ≠ ∈ , (1)
where kbin is the kth bin of the log-polar coordinate.
Then, given two histograms, ()

ir
h k and ()

jrh k , the
distance between them can be measured by

1

1(,) 1- min{ (), ()}
bin

i j

K

i j r r
kmesh

C r r h k h k
N =

= ∑ , (2)

where binK is the number of bins and meshN denotes the
number of meshes calculated from a posture. Using Eqs. (1)
and (2), we can define a centroid context to describe the
characteristics of an arbitrary posture P.

2
Pb

0
Pb1

Pb

0n

1n

0
Pv

1
Pv3

Pv

2
Pv

4
Pv

5
Pv 6

Pv

(a) (b) (c)

Fig. 3: Body component extraction: (a) triangulation resut;
(b) Skeleton of (a); and (c) centroids of different parts
(determined by removing all the branch nodes).

To define the centroid context of P, we need to
derive a skeleton of P using a graph search. The skeleton
extraction method can be found from our previous
work[10]. Then, from P, we can get its skeleton P

dfsT . As
shown in Fig. 3, (b) is the skeleton feature of P. Here, we
call a node a branch node if it has more than one child.
By this definition, there are three branch nodes in Fig. 3(b),
i.e., 0

Pb , 1
Pb , and 2

Pb . The branch nodes are the key
points used to decompose P into different body parts, such
as the hands, feet, or torso. If we remove all the branch
nodes from P

dfsT , it will be decomposed into different

branch paths P
ipath . For example, in Fig. 3(b), if we

remove 0
Pb from P

dfsT , two branch paths will be formed,

i.e., one from node 0n to 0
Pb and one from 0

Pb to node

1n . The first path corresponds to the head and neck of P,
and the second corresponds to the left hand of P. Given a
path P

ipath , we collect a set of triangular meshes P
iV

along it. Let P
ic be the centroid of the triangular mesh

closest to the center of the set of meshes. Given a centroid
P
ic , we can obtain its corresponding histogram ()P

ic
h k

using Eq.(1). Assume that the set of these path centroids is
PV . Based on PV , the centroid context of P is defined by:

0,...,| |-1
{ }P P

ic i V
P h

=
= ,

where | |PV is the number of elements in PV . Given two
postures, P and Q, the distance between their centroid
contexts is measured by

| |-1 | |-1

0 | | 0 | |0 0

1 1(,) min (,) min (,)
2| | 2 | |

P Q

P Q

V V
P P Q Q P Q

cc i i j j i jP Qj V i Vi j
d P Q w C c c w C c c

V V≤ < ≤ <= =

= +∑ ∑ ,(3)

where P
iw and Q

jw are the area ratios of the ith and jth
body parts residing in P and Q, respectively. Based on
Eq.(3), an arbitrary pair of postures can be compared. Then,
a clustering technique can be used to extract a set of key
postures from different action sequences. Then, with the set
of key postures, we can convert each action into a string.
3. Novel String Hypothesis Generator
Assume that S(p) is a string generated from an action
sequence. In order to deal with different spatial-temporal
scaling changes, coding errors, beginning symbols, and
noise, we present a novel method to generate a bank of
hypotheses for string classification. Assume that I is the set
of key postures. The number of key postures in I is M. A
hypothesis is a string histogram, which accumulates
symbol-to-symbol patterns appearing in S(p), generated
under different orders, sampling rates, and quantization
levels. The first-order hypothesis is generated by counting
the repeated pattern of symbol-to-itself with the sampling
rate 1i and quantized by d, i.e.,

1 1 1 1 1() #{ | () & () }/d
if S x p S p x S p i x d= = + =

 3

for all symbols 1x I∈ ,where 1i and d +Z∈ . The
second-order hypothesis is created for capturing the
relations between pairs of symbols to more accurately
analyze action sequences and defined as follows,

1 1 2 1 1 2(,) #{ | () & () }/d
if S x x p s p x s p i x d= = + = , (5)

where 1 2 and x x I∈ , and 1i and d +Z∈ . The general
form of string hypothesis can be extended to the Kth order
using the form:

1 2 -1, ,..., 1 2 1 1 2

1 2 -1

(, ,...,) #{ | () & () & &

 (...) }/ ,
K

d
i i i K

K K

f S x x x p s p x s p i x

s p i i i x d

= = + =

+ + + + =
 (6)

where 1 2, , ..., and Kx x x I∈ , and 1i , 2i , …, -1Ki , and d
+Z∈ . Then, using Eqs.(4)-(6), a bank of string

hypotheses can be generated. Each hypothesis is a weak
classifier for classifying action events into different events.
In Section 4, we will use the Adaboost algorithm to learn a
stronger classifier from the set of weak classifiers.
4. Event Classification with Adaboost
In this section, the original Adaboost algorithm is first
introduced. Then, details of the multi-class classier will
be proposed in Section 4.2.
4.1 Single Event Classification Using Adaboost

Assume that there is a string S which denotes an
action event. Then, we can generate a set Ω of string
features to represent this action event using Eq.(6). For
convenience, we use if S to denote the ith feature in Ω .
For each if S , we can use a indexing technique to convert
it into a feature vector with the length il . Similarly,
given an unknown string x, we can also generate different
string features where the ith feature in x is if x . Then,
the dissimilarity between if S and if x is calculated by

1 1
(,) () exp(| () - () |) () exp(| () - () |)

i il l

i i i i i i i i
j j

d f S f x f S j f S j f x j f x j f S j f x j
= =

= +∑ ∑ .(7)

Then, given Np training sequences of the same action event,
there are totally |Ω |Np string features generated for event
classification. These features form a bank of weak
classifiers. The Adaboost algorithm uses an iterative
scheme to gradually improve the ability of the learned
stronger classifier to classify action events.
 At each iteration t, a “good” weak classifier is
selected and added in turn to form a strong classifier which
is a weighted sum of individual selected weak classifiers.
The selected weak classifier ()th x is the one which has
the minimum classification error tε when the feature tf
is selected among the bank of features. At the tth step,
the Adaboost algorithm combines the weak classifiers
h1, ..., ht to form the strong classifier tH using the weight

tα by the form 0.5 ln ((1-) /)t t tα ε ε= . Thus, the tth
strong classifier tH has the form:

-1
1

t

t i i t t t
i

H h H hα α
=

= = +∑ .

Assume that there are N training samples. Details of the
Adaboosing algorithm is described as follows.
AdaBoosting Algorithm
Initially assign uniform weights 0 1/iw N= for all x.
At each iteration t:
1. Find the best weak classifier with ()th x with the error

tε based on tW and get t t t
1 = ln ((1-)/)
2

α ε ε ;

2. Get the hypothesis -1t t t tH H hα= + ;

3. +1 exp(- ())t
i t i iw H x y= and normalize it by +1

i=1
=1

N
t
iw∑ ;

Output the final hypothesis
1

() [()]
T

i t t i
t

H x sign h xα
=

= ∑ .

4.2 Multiple Event Classification
For tackling the multiple-class problem, we modify the
error correction concept [16] to simplify the multi-class
problems into a series of binary classification problems.
Assume that there are N event categories. Then, for each
event, we can train its stronger classifier Hi(x) for i=1, …,
N. Then, we can create a weight iW to code the ith
action event. Assume that there are c action events i

ke
for training iW to represent the ith event category. Then,
the jth bit ijW of iW can be decided by

1

1 (())
c

i
ij j k

k
W sign H e

c =

= ∑ . (8)

Then, iW becomes a histogram recording different
contributions of Hj to the event category Ei. Then, the
similarity between x and Ei can be measured by

1

(,) (())
N

i ij j
j

similarity x E W sign H x
=

= ∑ . (9)

Then, the correct type of x can be decided by
 () arg max (,)

i
iE

Type x similarity x E= .

5. Experiment Results
To analyze the efficiency and effectiveness of the proposed
approach, we created a large database which includes ten
types of action events. For each type, thirty action
sequences are included. In the first set of experiments, the
performances of our proposed method against different
temporal-scaling changes, beginning states, and coding
error rates were examined. Usually, a person cannot
perform the same behavior with the same speed at different
times. Our proposed string hypothesis generator has good
ability to tackle the above time-warping problem. In
addition, different initial statuses of action events will also
affect the accuracy of event recognition. The symbol
errors will also affect the accuracy of action event
recognition. Table 6 shows the accuracy analyses when
different environmental variations happen. Clearly, no
matter how the symbol error rate is, our method still
performs well to recognize all the input action sequences.

 4

Table 4: Accuracy analyses when actions have
temporal-scaling changes, frames shift, or errors.

Sampling Accur. Shift Accur.(%) Error Rate Accur.
rate=0.8 95.73 5 95.7 10% 96. 83
rate=1.2 93.28 10 94.38 20% 95.41
rate=1.5 92.81 20 94.21 30% 93.12
rate=2 90.73 30 94.17 40% 94.32

Table 5: Accuracy comparison of event recognition
between our method and HHM.

Actions Gym. Walk Squat Stoop Sitting
Boosting 95.9 97.2 95.3 98.4 99.6
HMM 85.79 88.5 89.7 90.62 91.57

(a) Frame #0 (b) Frame #152

Fig. 4: A video including multiple action events. (a)
Walking event. (b) Stooping event.

(a) (b)

Fig. 5: Result of multiple event recognition. (a) Result of
posture recognition. (b) Result of action event recognition.

In the second set of experiments, we used the real
action video sequences to test our proposed method. In
addition, the HMM method were implemented for
comparisons. Table 5 lists the accuracy comparison
between our method and HMM. Clearly, our method
performs much better than HMM. In addition to recognize
single action event, our method can also recognize multiple
action events in the same video sequence. Shown as Fig.
4, there is a video sequence beginning with a walking event
(see (a)), then a stooping event (see (b)), and ending with a
walking one. The video sequence can be decoded into a
series of postures. Then, ten key postured were extracted
for recognizing these postures. Fig. 5(a) shows the set of
key postures. Then, we can convert this video sequence
into different symbols. Clearly, if only postures are used to
recognize the behaviors, many errors will happen like Fig.
5(b). The errors can be avoided if our proposed method is
adopted. Then, a smooth curve was obtained and shown in
Fig. 5(c). Clearly, our method can well recognize any video
sequences even though they include multiple action events.

Fig. 6: Retrieval result of walking event.

Our proposed method also can be used to retrieve
video sequences. Fig. 6 shows the retrieval result when a

walking action is queried. After hundreds of query tests,
the average accuracy of action retrieval is 97.5%. All the
above results have proved that the proposed boosting
method is a robust, accurate, and powerful tool for action
event analysis.
References
[1] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian

computer vision system for modeling human interactions,”
IEEE Transactions on PAMI., vol. 22(8), pp. 831-843, 2000.

[2] Y. A. Ivanov and A. F. Bobick, “Recognition of visual
activities and interactions by stochastic parsing,” IEEE
Transactions on PAMI., vol. 22, no. 8, pp. 852-872, 2000.

[3] W. Hu, T.-N. Tan, L. Wang, and S. Maybank, “A Survey on
Visual Surveillance of Object Motion and Behaviors,” IEEE
Transactions on SMC-Part C. vol. 34, no. 3, pp. 334-352,
Aug. 2004.

[4] J. Aggarwal and S. Park, “Human motion: Modeling and
recognition of actions and interactions,” Proceedings of the
2nd International Symposium on 3D Data Processing,
Visualization, and Transmission, pp. 640–647, 2004.

[5] N. T. Nguyen, et al., “Recognition and monitoring high-level
behaviors in complex spatial environments,” CVPR, vol. 2, pp.
620-625, June 2003.

[6] R. Navaratnam, et al., “Hierarchical part-based human body
pose estimation,” In Proc. British Machine Vision Conference,
vol. 1, pp. 479-488, UK, Sep. 2005.

[7] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani,
“Probabilities posture classification for human-behavior
analysis,” IEEE Transactions on SMC-Part A, vol. 35, no. 1,
pp. 42-54, Jan. 2005.

[8] A. Galata, N. Johnson, and D. C. Hogg, “Learning
Variable-Length Markov Models of Behavior,” CVIU, vol. 81,
No. 3, pp. 398-413, March 2001.

[9] N. Jojic, et al., “Transformed hidden Markov models:
Estimating mixture models and inferring spatial
transformations in video sequences,” CVPR, vol. 2, pp. 26-33,
Hilton Head, SC, June 2000.

[10] Y. T. Hsu, J. W. Hsieh, and H. Y. Liao, “Human behavior
analysis using deformable triangulations,” IEEE
International Workshop on Multimedia Signal Processing,
Shanhai, China, Nov. 2005.

[11] A. S. Ogale, et al., “View-invariant modeling and
recognition of human actions using grammars,” In
Workshop on Dynamical. Vision at ICCV’05, October 2005.

[12] T. Wada and T. Matsuyama, “Multiobject behavior
recognition by event driven selective attention method,”
IEEE transaction on PAMI., vol. 22, no. 8, pp.873–887,
August 2000.

[13] M. Brand, “Understanding manipulation in video,” In
Proceedings of Second International Conference on Face
and Gesture Recognition, pp. 94-99, 1997.

[14] A. Kojima and T. Tamura, “Natural language description of
human activities from video images based on concept
hierarchy of actions,” IJCV, vol.50, no.2, pp.171-184, 2002.

[15] L. P. Chew, “Constrained delaunay triangulations,”
Algorithmica, vol. 4, no.1, pp. 97-108, 1989.

[16] T. G. Dietterich and G. Bakiri, “Solving multiclass learning
problems via error-correcting output codes,” Journal of
Artificial Intelligence Research, vol. 2, pp. 263-286, 1995.

