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Abstract 
A structured ASIC has some arrays of pre-fabricated yet 

configurable logic blocks (CLBs) with/without a regular 
routing fabric. In this paper, we propose a standard cell like 
via-configurable logic block (VCLB). We design a 0.18um 
standard cell library based on our VCLB and establish a 
design flow using as many commercial tools as possible. We 
also propose a method to evaluate the viability of a 
structured ASIC fabric. Our structured ASIC fabric with 
programmable metals for routing achieves a delay of 2.7 
times, an area of 3 times, and a power of 1.5 times that 
attained by the designs using a commercial cell library.  
 
1. Introduction 

A structured ASIC has some pre-fabricated yet 
configurable logic block (CLB) arrays with/without a regular 
routing fabric [1-5] and perhaps some pre-diffused or 
customized IPs and programmable I/Os. A CLB can be via- 
or metal-configurable. A via-configurable CLB is less 
flexible but uses fewer customizable mask layers. A regular 
routing fabric has repetitive patterns pre-defined on the 
higher metal layers. It is normally via-configurable and thus 
has fewer customizable mask layers [6-9]. Some companies 
even advocate using only one via layer to customize both 
CLB and routing fabric [10]. As shown in Fig. 1, structured 
ASIC embraces a large mid-section of programmability 
spectrum. One end of the spectrum is cell-based ASIC with 
non-programmable cells but programmable routing metals. 
The other end is FPGA with SRAM-based programmable 
cells and routing fabrics. The gaps between these two ends 
are addressed in [2]. Structured ASIC can achieve a timing 
performance comparable to that of a cell-based ASIC while 
using much less power than that of an FPGA. It pays only the 
cost of customizing mask layers for cells and routing and an 
amortized mask cost for the remaining layers. It enables a 
fast manufacturing turn-around time. Its regular routing 
fabric is instrumental in improving manufacturability [11].  

As an emerging design option, structured ASIC has many 
problems related to designing of CLBs and routing fabrics as 
well as tool development [12,13]. Especially, lack of tool 
supports for cell library development, placement and routing, 
logic synthesis, etc. has prevented structured ASICs from 
being widely adopted. Tool development is closely related to 
how CLBs are designed. Basically, a CLB should be 
designed to leverage the existing tools as much as possible 
and to reduce the numbers of customizable mask layers. Cell 
and routing fabric programmability has a great influence on 
tool development. Table 1 shows the programmability 
choices made by the major vendors [1,3,10,12,14,15] and 
research groups (the last four rows) [4,5,7]. This is by no 
means an exhaustive list. The last column indicates whether 

the same transistors in CLBs can be used to implement 
combinational logic and sequential elements. As one can see, 
most vendors choose metal programmability for cells and 
routing fabrics. Such a choice incurs a least amount of efforts 
for tool development. For example, a placer and a router for 
standard cell designs can be customized for this kind of 
structured ASICs. Conversely, a new router should be 
developed if a via-programmable routing fabric is used. 
Moreover, CLB layout should not complicate power/ground 
network distribution. As for cell granularity, a new logic 
synthesizer or a logic packer should be developed if a coarse 
grained cell (CLB) is adopted. Besides, designing of CLBs 
should also consider the following issues.  

 Basic logic functions realized by a CLB. 
 CLB composition capability. 
 Transistor utilization of coarse grained CLBs. 
 Library development efforts. 

The above is by no means an exhaustive list but it 
presents the issues closely related to our work. These issues 
are co-related to each other. The basic logic functions 
realized by a CLB depend on CLB granularity. What we 
mean by a basic logic function is a logic function that has a 
template in a cell library employed by a logic synthesis tool. 
A coarse grained CLB, especially for a look-up table based 
CLB, can be configured to implement many basic logic 
functions. A fine grained CLB has a limited number of 
realizable functions, but its composition capability enables us 
to form more complex logic functions using more than one 
CLB. CLB composition only uses the programmable layers 
dedicated to CLBs for implementing a basic logic function. 
Metal programmable CLBs have the highest composition 
capability whereas via-programmable CLBs may have or not 
have composition capability. A coarse grained CLB may pay 
a large area penalty due to poor transistor utilization of CLBs. 
Moreover, coarse grained CLB complicates the library 
development task since library characterization should be 
done for a huge number of basic logic functions that can be 
realized by a CLB. Transistor utilization of coarse grained 
CLBs also depends on whether the transistors not used for 
combinational logic can be used to implement sequential 
elements in a CLB. Poor utilization could occur if each 
coarse grained CLB consists of a flip-flop and combinational 
logic blocks but the flip-flop is not used in a design. 
Conversely, fine grained CLB has better transistor utilization. 
However, it pays more area penalty for isolating CLBs from 
each other because more fine grained CLBs will be used to 
implement the same design. Library development effort is 
smaller for fine grained CLBs. Besides the above issues, 
designing of a programmable fabric using CLBs should also 
consider the relocating problem of an IP [14]. 
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Figure 1. Programmability spectrum of cell and routing fabric. 

 
Table 1. Programmability choices. 

Programmability Vendors/ 
Researchers 

Grain 
size Cell Routing fabric

Unified 
c&s? 

LSI Fine Metal Metal ? 

eASIC Coarse SRAM-
based LUT Via No 

Virage Logic Fine Metal Metal ? 
NEC Coarse Metal Metal No 
AMI ? Metal Metal ? 

ChipX ? Metal Metal ? 
Fujitsu ? Metal Metal ? 
Faraday ? Metal Metal ? 
Altera Fine Metal Metal Yes 

ViASIC Coarse Via Via No 
Triad Semi. ? Via Via ? 
Synopsys [5] Coarse Via Via No 

Marek- Sadowska et al. Coarse Via Via Yes 
Pilleggi et al. Coarse Via Metal/Via No 

Ours Medium Via Metal Yes 

In this paper, we propose a medium grained via-
programmable CLB (VCLB). Our VCLBs along with either a 
metal or a via-programmable routing fabric can be used to 
construct a structured ASIC. Each VCLB has five pairs of P-
N transistors. These transistors can be configured into a logic 
function with five or fewer inputs using M1-M2 vias.  
VCLBs can be abutted to form a more complex function 
using the jumpers at their both ends. The same VCLB can be 
used to implement either combinational or sequential 
elements. Power/ground (P/G) buses are placed on M2 to 
facilitate the deployment of M3 power straps. They are 
located at the top and bottom boundaries so that they can be 
made wider by cell row abutment. We establish a design flow 
primarily using commercial standard cell design tools. Our 
own tools include a logic packer and a placement legalizer. 
We create a 0.18um standard cell library based on our VCLB 
to test our design flow and to evaluate the viability of our 
VCLB. Experimental results show that our structured ASIC 
fabric with programmable metals for routing achieves a delay 
of 2.7 times, an area of 3 times, and a power of 1.5 times that 
attained by the designs using a commercial standard cell 
library. The method we propose here to evaluate the viability 
of a structured ASIC fabric is very important. It is based on 
the concept of pushing the delay envelope to see how small a 
delay can be achieved using a programmable fabric. 

The rest of this paper is organized as follows. Section 2 
discusses some VCLB design problems. Section 3 presents 
our programmable fabric. Section 4 describes our design 
methodology. Section 5 presents some experimental results. 
The last section draws conclusions and discusses future work. 

 
2. Existing VCLBs 

There are three types of VCLB. First, a VCLB can be an 
FPGA-like look-up table (LUT). LUT-based VCLBs 
proposed in [4] can be laid out in a way similar to standard 
cells. Standard cell design style enables simple P/G 
distribution. P/G buses between adjacent cells can be abutted 
and P/G straps using higher metal layers can be easily 
deployed to form a P/G network. The major problem of 
LUT-based VCLBs is that each LUT must be accompanied 

by a flip-flop. Since flip-flops are not used as frequently as 
LUTs, the utilization of transistors in VCLBs is low. The 
second type of VCLB is based on PLA structure [16]. PLA 
enables implementation of two-level logic functions, but it 
still needs flip-flops for implementing a sequential design. 
The third type of VCLBs [7] uses series-parallel layout 
structures to implement either combinational logic gates or 
flip-flops. Since our work is closely related to this type of 
VCLB, we will detail the work proposed in [7]. Two via-
configurable base-cells are proposed in [7].  One is called n-
ViaCC (or n-VCC for short) that consists of n pairs of P-N 
transistors. These transistors can be configured to implement 
n or fewer input functions. A 5-VCC in Fig. 2 is specially 
proposed. One can refer [7] to see which logic functions can 
be realized by a 5-VCC. A via in a 5-VCC can be installed at 
the place where an M1 line and an M2 line intersect. All the 
layers below M1 are pre-fabricated and M2 layer is with pre-
defined mask patterns. Only the M1-M2 vias can be used to 
set the logic functions of a 5-VCC. The M2 P/G lines run 
horizontally in parallel with diffusions and M1 wires run 
vertically in orthogonal to M2 wires. The other base-cell is 
called inverter array(INVA for short) which can be used to 
implement inverters, XOR/XNORs, multiplexers, etc. An 
INVA has three diffusion strips for each type of transistors. 
A layout of INVA is shown in Fig. 2 where P/G lines are run 
horizontally in M1. A 5-VCC and an INVA can be combined 
to implement a flip-flop. An even larger programmable block 
called VCGA as shown in Fig. 3 is also presented. A VCGA 
has four basic logic elements (BLE). Each BLE has a 5-VCC 
and two INVAs. Note that an INVA takes a larger area than a 
5-VCC. There are some problems with this VCGA. 

 The short P/G lines in a VCGA are laid out on two 
different layers. Connecting them together, we must use a 
large number of vias and M1/M2 wires. This drastically 
increases the resistance of P/G network. Moreover, we 
need to add extra vias to connect the P/G networks among 
VCGAs, this further increases the P/G network resistance. 
Note that the P/G lines in a VCC and an INVA are not 
located at the boundaries so that row abutting to make 
wider P/G lines is not possible. 

 We need to implement a complicate P/G network using 
higher metal layers (M3 or above) no matter whether the 
P/G lines in VCCs and INVAs are configured to be 
connected or not. Moreover, we can not freely drop a via 
from an M3 P/G strap to an M1 P/G line because a short 
to M2 signal wires in INVAs may occur.  

 The number of functions that can be implemented by a 
VCGA is large and some of them can be very complex. 
Creating a library that consists of these functions for logic 
synthesis, physical design, and timing analysis tools is 
very difficult. No discussion of such efforts is made in [7]. 
In summary, the above drawbacks prevent VCGAs from 

being used as standard cells. Yet another problem with 
VCGA is that the fourth quadrant of a BLE does not have 
any transistors. Our standard cell like VCLB does not have 
the aforementioned problems. 
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Figure 2. Layouts of 5-VCC (top) and INVA. 

 
Figure 3. A VCGA proposed in [7]. 

3. Proposed programmable fabric 
Our programmable fabric has a two dimensional array of 

VCLBs and a metal programmable routing fabric. We will 
first describe our VCLB and then demonstrate the 
configurability and composition capability of our VCLBs.  

3.1. Layout of our VCLB 
Fig. 4 shows the stick diagram and layout of our VCLB. 

Our VCLB has five transistor pairs. The three transistor pairs 
on the left are used to form CMOS logic and the two 
transistor pairs on the right are used to form pass transistor 
logic. CMOS logic is implemented using serial-parallel 
structures. Pass transistors can be better used to implement 
multiplexers and XOR/XNOR. Vias can be selectively 
inserted at the junctions of M1 and M2 wires to implement a 
logic function. Almost all the logic functions realized by a 5-
VCC can be implemented by our VCLB.  

Despite of a resemblance between our VCLB and the 5-
VCC and INVA, our VCLB has the following features. 

 Our VCLB is a monolithic block. It is asymmetric and can 
not be flipped w. r. t. Y-axis for structured ASIC designs. 

 The preferable routing directions of M1 and M2 are 
vertical and horizontal, respectively.  

 M2 P/G lines are located at the top and bottom boundaries. 
Our VCLBs can be abutted seamlessly to form a cell row. 
A cell row can be flipped w. r. t. X-axis so that it can abut 
the rows above and below it to form wider P/G lines.  

 M3 (or high layer) P/G straps can be freely deployed 
above the core area because they can be connected to the 
M2 P/G lines in the cells without any restriction. 
Basically, what can be done for a traditional standard cell 
design can also be done for a design based on our VCLBs. 

 The I/O pins are the short vertical M2 wire segments 
located at the central strap of the VCLB. They are on-grid 
and have enough space for via doubling. The unused 
inputs need not be tied to P/G because any floating input 

does not have a chance to create a short circuit from 
power to ground. However, a choice of connecting a pin 
to P/G can always be made. 

 A VCLB has five long M2 wires for intra VCLB 
connections and three M1 jumpers at both ends for inter 
VCLB connections. The jumpers enable the composition 
of our VCLBs so that a more complex logic function can 
be implemented using several VCLBs. 

 Creating a cell library using our VCLB is considerably 
easier than that using VCGA given in Fig. 3 because the 
number of logic functions that can be implemented by our 
VCLB is much smaller.  

Our VCLB with respect to power planning is similar to that 
presented in [5]. However, there are two important 
differences. One is that each CLB in [5] must contain a fixed 
ratio of combinational logic elements to sequential elements. 
The other is that the CLB in [5] lacks composition capability. 

 
Figure 4. Proposed VCLB. 

3.2. Configurability and composition capability 
Here, we will show the configurability and composition 

capability of our VCLBs. The layout in Fig. 5 (left) is a 2-to-
1 multiplexer. The third pair of P-N transistors is used to 
create the complement of S0 and the two pairs of P-N 
transistors on the right are used to form two transmission 
gates. Two pairs of transistors are unused. Fig. 5 (center) 
shows a layout for AOI221X4. The layout consists of two 
VCLBs. A buffer of 4X driving capability is implemented in 
one VCLB. Fig. 5 (right) shows a layout of a positive edge 
triggered D flip-flop with active low reset. The layout 
consists of three VCLBs. From the above two layouts, one 
may find that the jumpers between two VCLBs have been 
employed to send signals from one VCLB to another. Note 
that more complex functions can be realized using a various 
number of VCLBs. Large drive inverters and buffers can be 
realized in a similar way. The VCLB can be modified to 
provide more jumpers and long wires for inter cell 
connections. Our library will have logic functions that uses 
two or more VCLBs. A multi-VCLB logic block can be 
freely placed at any legal position as long as it is confined 
within a cell row. That is to say, it is relocatable. Besides, 
more than one basic logic function can be packed into the 
same VCLB. Later, we will present a logic packer that carries 
out the packing task for a synthesized design. 
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Figure 5. Layout of  2-to-1 multiplexer (left), layout of AOI221X4 (center), and layout of a D flip-flop. 

 
4. Design methodology 

Here, we present a design methodology for structured 
ASICs. Fig. 6 shows a simple flow of how to construct a 
standard cell library (the shaded part) and perform chip 
designs using a cell library based on our VCLB. To create a 
cell library, we first define a via map for each logic function.  
We install the so-defined vias on a VCLB to complete the 
layout of a logic function. We use Mentor’s Calibre to extract 
post-layout parasitics and the tool in [17] to perform post 
layout timing characterization. Once this is done, we create a 
library called DC cell library for Synopsys Design Compiler. 
In DC cell library, since the transistors in the VCLBs for 
simple logic functions are not fully utilized, we hand-pack 
two logic functions into a single VCLB to form a multi-
function packed block (MFPB). Determining which basic 
logic functions should be put into an MFPB is very 
complicate. We only combine the most frequently used logic 
functions into one MFPB. Accordingly, we have to create a 
layout for each MFPB. Once this is done, we create a library 
called SOC-E cell library for Cadence SOC Encounter. SOC-
E cell library has packed versus non-packed logic blocks. 

A design flow mostly using commercial tools such as 
logic synthesizer, placer, router, timing analyzer, etc. is also 
shown in Fig. 6. The tools developed by ourselves are a logic 
packer and a placement legalizer. 

4.1. Logic packer 
Our logic packer places two logic functions into a 

VCLB. It has the following steps.  

 
Figure 6. Library and chip design methodology. 

 
Figure 7. An example of logic packing. 

Step 1: A graph is created. A non-fully used VCLB is 
modeled as a vertex. An edge between two vertices is created 
if the two corresponding VCLBs can be combined into one 
VCLB. Any two VCLBs can be combined into one VCLB if 
there is a corresponding MFPB in the SOC-E cell library. 
Each edge is assigned a weight using the approach proposed 
in [18]. The edge weight represents how strongly the two 
related VCLBs should be connected.  

Step 2: We first perform a maximum weight bipartite 
matching on a subgraph formed by VCLBs, each of which 
implements either a 4-input or 1-input basic logic function. 
Once this is done, any two matched VCLBs are combined 
into one VCLB and the two vertices corresponding to the two 
original VCLBs are removed from the graph. Any 4-input 
VCLB that can not find a matching should be removed from 
the original graph. This step is repeated for a subgraph 
comprised of 3-input and 2-input VCLBs and a subgraph 
comprised of 3-input and 1-input VCLBs.  

Step 3: We perform a general maximum weight matching 
on a subgraph comprised of only 2-input VCLBs, 2-input and 
1-input VCLBs, and only 1-input VCLBs, respectively.  

Fig. 7 shows a logic packing example. Fig. 7(a) is the 
original graph. Fig. 7(b) is the matchings for the subgraph 
comprised of 3-input VCLBs and 2-input VCLBs. The graph 
in Fig. 7(c) is obtained by deleting the vertices with 
matchings and the un-matched vertices that correspond to 3-
input VCLBs. The matchings in Fig. 7(c) are for 2-input 
VCLBs only. We obtain an optimal solution for the example 
in terms of the number of matchings and total edge weights. 

4.2. Placement legalizer 
Our placement legalizer takes the result from a standard 

cell placer as input and determines a legal position for each 
cell such that the total displacement of all cells from their 
original positions is minimized. We assume that the order of 
the cells in a cell row is preserved. The legalizer is run for the 
cells in each row. A legal position for a cell in a row should 
be an integral multiple of VCLB width. This problem is 
formulated as a minimum weight bipartite matching problem. 
We create a bipartite graph as follows. A cell is modeled as a 
vertex in one group. The vertices in this group is denoted as 
Ci, i=0, n-1.  Each of the legal positions on a row is modeled 
as a vertex in the other group. The vertices in this group is 
denoted as Rj, j=0, m-1. An edge between Ci and Rj is created 
if Rj is a permissible position for vertex Ci. A permissible 
position for Ci  is a legal position so that there is at least a 
placement solution for all the cells in a row if Ci  is placed at 
that position. Let the width of Ci be wi, the total width of the 
cells to the left of iC  be i , the total width of all the cells to 
the right of iC  be 'i , and the length of a row be r , all in 
terms of the VCLB width. Then, the permissible position for 

iC  starts from i  and terminates at '( )r i iw− + . A weight 
is assigned to each edge between Ci  and its permissible 
position Rj. The weight is set to the distance between the 
original position of Ci  and Rj. Fig. 8(a) shows a cell row with 
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cells C0 and C1 whose positions are originally at 7.25 and 21. 
The width of a VCLB is 10. The permissible positions are 0, 
10, 20 for C0 and 10, 20, 30 for C1, respectively. Fig. 8(c) 
shows a minimum weight bipartite matching which places C0 
at 10 and C1 at 20, with a minimum weight of 3.75. 

 
Figure 8. An example of legalizing cell positions. 

 
5. Experimental results 

We have implemented a cell library using our VCLB for 
evaluating the design methodology described in Fig. 6. When 
implemented using 0.18um process technology, our VCLB 
has an area of 78 um2. The library consists of 105 unpacked 
cells and 73 packed cells. We selectively implement some 
functions that are found frequently used by a logic synthesis 
tool. Most of the logic functions except inverter, buffer, and 
flip-flop have driving capability of 1X, 2X, 4X. Buffer has 
driving capability from 1X up to 16X and inverter has 
driving capability from 1X up to 20X. D flip-flop with reset 
has driving capability of 1X and 2X. Power and timing data 
of each cell are characterized using HSPICE.  

Two kinds of experiments are performed. One uses our 
library (YZUL for short) for doing chip design. The other 
uses a commercial standard cell library (STDL for short). 
Both libraries are based on the same 0.18um process 
technology. The same parameter settings such as power ring 
width, core utilization, etc. are used to design chips 
regardless of which library is used. The designs using YZUL 
are routed without using M1 and M2 layers whereas those 
using STDL are routed with M1 and M2 layers. The large 
benchmark circuits from ISCAS89 and ITC99 are used in our 
experiments. Our experiments are carried out in the 
following manner. First, we use Synopsys Design Compiler 
to synthesize each circuit without any timing requirements 
but aiming only to minimize the area. We then find the 
longest path delay for each circuit after the circuit is routed. 
We call such a delay base_delay. We then perform logic 
synthesis for each circuit with clock period specified as 
0.9*base_delay, 0.8*base_delay, 0.65*base_delay, 
0.5*base_delay, 0.35*base_delay, 0.2*based_delay, and 
0.1*based_delay, respecyively. The reason for carrying out 
experiments in this way is to see how far we can push the 
delay envelope of the designs using each library. 

Tables 2 and 3 show the longest path delays of the post-
routed circuits respectively designed with both libraries. The 
numbers of cells and nets of the circuits synthesized without 
timing requirements using STDL are also given in Table 2. 
The columns denoted by “1” give the base_delays. The 
columns denoted by “0.9” give the longest path delay for the 
cases with clock period specified as 0.9*base_delay. Tables 4 
and 5 show the cell areas of the designs. Tables 6 and 7 
present the total power dissipation. Table 8 summarizes the 
delay, area, and power data.  The column “Delay ratio” gives 
the ratio of the smallest longest path delay of a circuit using 
YZUL to that of the same circuit using STDL. For example, 
the small longest path delay of b14 using STDL is 4.9ns and 
it is 10.5ns for the case using YZUL. Thus, we have a ratio 
of 2.1. The area and power ratios are calculated accordingly. 

For example, the total area of b14 using STDL corresponding 
to the case with the smallest longest path delay is 283000 
um2 and it is 679000 um2 for the case using YZUL. Thus, we 
have an area ratio of 2.4. Power ratio is similarly calculated. 
The power ratios of some circuits are smaller than 1. This 
does not mean that the circuits using YZUL consume less 
power because the circuits using YZUL have their delays 
several times more than that of the circuits using STDL. If 
we push the delay envelope, the delay of our structured ASIC 
designs is on average 2.7 times that of their standard cell 
counterparts at the expense of 3 times area and 1.5 times 
power. These data serve as achievable lower bounds for the 
case of using a via-programmable routing fabric. 

The last two columns in Table 8 present some interesting 
data about achievable delay envelope. A value in the last 
column is the ratio of the largest longest path delay of a 
circuit using YZUL to the smallest longest path delay of the 
same circuit also using YZUL. A value in the column “STDL 
max/min delay ratio” is calculated similarly. We find that the 
circuits using STDL have much larger ratios. This implies 
that a standard cell library can enable more aggressive delay 
optimization than our YZUL. This is an important 
observation which gives a clear direction for the future 
research on CLBs. Part of the reason why YZUL achieves a 
smaller ratio is that each cell in YZUL has much more 
parasitic capacitance than that in STDL and thus has a larger 
cell delay. As a result, the total cell delay takes a dominant 
part of critical path delay of a circuit using YZUL so that its 
critical path can not be effectively optimized.  

Transistor utilization of the VCLBs in the circuits using 
YZUL is on average 73%. This is smaller than that reported 
in [7]. Part of the reason for this is that we do not pack the 
un-related VCLBs.  

Making a comparison of our results to the previous works 
[5,7] is difficult because they do not perform experiments 
like ours, i.e., not performing experiments to push delay 
envelope. The comparison depends on which point on the 
delay curve is used, whether layout parasitics are considered, 
what kinds of tools are used, etc. However, if a comparison 
must be made, our YZUL on average achieves a delay-area 
product of 8.0 and a delay-power product of 3.9 whereas the 
work in [5] from an EDA company on average achieves a 
delay-area product of 14.8 and a delay-power product of 5.4. 
Note that the work in [5] has a via-programmable routing 
fabric rather than a metal programmable routing fabric like 
ours. The work in [7], having a metal programmable routing 
fabric, achieves a delay-area product of 2.87 and a power-
delay product of 1.56. However, these data are obtained 
without performing detailed routing. 

Table 2. Longest path delay of designs using STDL (ns). 
 Cells Nets 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1

s35932 3929 4553 11.2 12.3 13.0 11.4 12.4 9.4 13.2 2.0*
s38417 5033 5189 4.9 3.5 3.4 3.2 2.9 2.8 2.8 2.7
s38584 6067 6474 36.7 4.7 5.0 5.0 5.4 4.9 3.9 3.1

b14 2217 2666 19.7 14.3 13.9 11.4 6.8 6.5 4.9 5.6
b15 3127 3448 35.3 14.6 12.9 14.6 12.2 10.1 8.3 13.0
b17 10290 10509 28.7 12.8 12.7 13.4 11.6 16.0 19.1 14.3
b18 28002 30647 29.2 17.7 16.9 15.3 15.0 10.3 8.6 13.2
b19 58545 60412 36.6 20.0 18.1 16.5 16.0 13.6 17.2 13.6
b20 4674 5389 19.8 15.3 14.9 12.4 7.0 9.8 6.1 5.8
b21 4561 5263 20.0 15.0 15.7 12.1 7.6 7.0 5.4 5.5
b22 6894 7966 21.0 17.2 17.4 16.0 10.3 9.0 5.3 6.3
Ave 23.9 13.4 13.1 12.0 9.7 9.0 8.6 7.7

* This is not an error. This delay value is achieved due to having proper fanout 
optimization. 
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6. Conclusions and future work 
In this paper, we have proposed a standard cell like 

VCLB such that existing tools for standard cell designs can 
be leveraged to design a structured ASIC based on our 
VCLB. Our approach achieves a delay of 2.7 times, an area 
of 3 times, and a power of 1.5 times that attained by the 
designs using a commercial standard cell library if we push 
the delay envelope of the designs. Currently, we are working 
on a via-programmable routing fabric and developing a 
router for it. A clock tree synthesizer and some timing and 
power optimization methods are yet to be developed. 

Table 3. Longest path delay of designs using YZUL (ns). 
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1 

s35932 31.7 25.8 35.8 22.2 32.8 21.7 32.6 11.4
s38417 8.0 7.3 7.7 6.8 6.3 6.5 6.3 6.9
s38584 21.1 8.3 7.1 8.8 7.5 6.6 5.8 6.7

b14 21.6 16.0 13.6 13.4 10.5 11.1 11.6 12.4
b15 66.9 20.6 20.7 20.5 19.2 16.5 13.2 14.4
b17 44.7 19.6 21.0 18.7 17.7 15.5 17.0 16.2
b18 53.7 24.8 29.2 28.0 28.1 26.0 36.7 37.6
b19 55.4 27.1 31.4 30.9 28.2 20.9 22.1 29.4
b20 22.2 15.6 15.8 17.2 17.0 21.1 20.2 18.9
b21 28.3 23.4 15.3 15.4 16.0 16.4 19.1 17.5
b22 31.9 30.3 23.4 21.3 24.1 26.7 31.9 30.7 
Ave 35.0 19.9 20.1 18.5 18.8 17.2 19.7 18.4 

Table 4. Total cell area of designs using STDL (x1000um2). 
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1 
s35932 180 182 182 182 182 182 191 268 
s38417 180 196 205 232 273 293 309 308 
s38584 173 169 169 169 169 169 170 183 

b14 88 123 143 169 102 130 283 276 
b15 116 121 122 121 121 128 166 206 
b17 337 360 360 360 368 415 522 634 
b18 953 996 1003 1007 1099 1079 1595 1694 
b19 1880 1938 1944 1970 1996 2350 2640 3022 
b20 170 244 291 353 214 331 535 560 
b21 166 237 268 439 209 316 566 595 
b22 248 343 363 473 322 438 810 803 
Ave 408 446 459 498 459 530 708 777 

Table 5. Total cell area of designs using YZUL (x1000um2). 
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.10 

s35932 783  787  787  787  787  787  788  820  
s38417 715  780  809  915  1038  1094  1153  1115  
s38584 706  699  698  698  701  713  812  915  

b14 274  468  499  549  679  871  1044  951  
b15 434  493  492  493  493  493  596  762  
b17 1237  1466  1467  1474  1488  1712  2102  2189  
b18 3236  4032  4077  4152  4341  4456  5801  6089  
b19 6336  8024  8104  8251  8655  8659  11210 11905 
b20 544  996  989  1291  1594  1927  2040  1989  
b21 531  1413  929  993  1366  1911  2012  2049  
b22 801  1746  1772  1502  1815  2488  2917  2935  
Ave 1418  1900  1875  1919  2087  2283  2771  2884  

Table 6. Power dissipation of the designs using STDL (mw, 
at 100MHZ, 20% toggling rate).  

 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1 
s35932 3.6 3.3 3.4 3.4 3.3 3.4 3.4 9.4 
s38417 5.6 6.0 6.5 7.6 9.2 9.9 10.8 10.8 
s38584 5.1 5.5 5.5 5.5 5.5 5.4 5.6 6.2 

b14 2.9 4.1 5.0 5.8 3.5 4.6 12.2 11.9 
b15 3.7 3.8 3.8 3.8 3.8 4.0 5.3 7.6 
b17 12.6 12.8 12.8 12.8 13.0 14.2 19.9 25.3 
b18 32.6 36.9 36.9 36.9 39.7 38.8 61.5 66.3 
b19 70.0 73.1 73.1 74.3 74.4 82.6 98.3 118.8 
b20 5.9 8.7 10.8 12.5 7.6 12.8 22.9 24.8 
b21 5.8 8.1 9.6 12.7 7.4 12.1 24.4 26.7 
b22 8.7 11.8 13.3 17.9 12.1 16.9 33.9 36.0 
Ave 14.2 15.8 16.4 17.6 16.3 18.6 27.1 31.3 

Table 7. Power dissipation of the designs using YZUL (mw, 
at 100MHZ, 20% toggling rate).  

 1.0 0.9  0.8  0.65  0.5  0.35  0.2  0.1  
s35932 15.8 17.4 17.4 17.5 17.5 17.8 17.4 19.6 
s38417 15.7 15.5 15.7 16.7 18.0 18.5 19.3 19.6 
s38584 14.6 15.8 15.9 15.7 15.7 15.9 17.1 17.9 

b14 4.8 6.7 7.3 8.4 10.0 12.7 15.2 13.8 
b15 8.3 9.0 9.0 8.8 8.9 9.3 10.2 11.7 
b17 25.1 28.4 28.2 29.1 28.5 31.8 35.7 35.1 
b18 65.8 76.9 78.1 79.1 80.9 79.5 96.9 96.7 
b19 128.1 154.3 157.6 158.6 161.5 156.8 188.5 193.0 
b20 9.9 15.3 15.1 19.5 23.9 27.0 29.6 28.8 
b21 9.5 21.3 14.2 15.0 20.8 27.8 29.0 29.4 
b22 14.9 27.6 26.6 23.5 28.3 38.1 42.8 44.5 
Ave 28.4 35.3 35.0 35.6 37.6 39.6 45.6 46.4 

Table 8. Delay, area, and power ratio 

 

Delay 
ratio 

Area 
ratio 

Power 
ratio 

Delay
*powe

r 

Delay
* 

area 

STDL 
max/min 

delay ratio

YZUL 
max/min 

delay ratio
s35932 5.8  3.1  2.1  12.2  17.9  6.8  2.8  
s38417 2.4  3.7  1.8  4.2  8.8  1.8  1.3  
s38584 1.9  4.4  2.8  5.2  8.2  11.9  3.7  

b14 2.1  2.4  0.8  1.8  5.2  4.0  2.0  
b15 1.6  3.6  1.9  3.1  5.7  4.2  5.1  
b17 1.3  4.6  2.4  3.3  6.2  2.5  2.9  
b18 2.9  2.5  1.3  3.6  7.3  3.4  2.2  
b19 1.5  3.7  1.9  2.9  5.7  2.7  2.6  
b20 2.7  1.8  0.6  1.7  4.8  3.4  1.4  
b21 2.8  1.6  0.6  1.7  4.7  3.7  1.8  
b22 4.0  1.9  0.7  2.8  7.5  4.0  1.5  
Ave 2.7  3.0  1.5  3.9  8.0  4.4  2.5  
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