
Standard Cell Like Via-Configurable Logic Block for Structured ASICs

Mei-Chen Li, Hui-Hsiang Tung, Chien-Chung Lai, Rung-Bin Lin*
Computer Science and Engineering, Yuan Ze University

135 Yuan-Tung Road, Chung-L, Taiwan
csrlin@cs.yzu.edu.tw*

Abstract
A structured ASIC has some arrays of pre-fabricated yet

configurable logic blocks (CLBs) with/without a regular
routing fabric. In this paper, we propose a standard cell like
via-configurable logic block (VCLB). We design a 0.18um
standard cell library based on our VCLB and establish a
design flow using as many commercial tools as possible. We
also propose a method to evaluate the viability of a
structured ASIC fabric. Our structured ASIC fabric with
programmable metals for routing achieves a delay of 2.7
times, an area of 3 times, and a power of 1.5 times that
attained by the designs using a commercial cell library.

1. Introduction

A structured ASIC has some pre-fabricated yet
configurable logic block (CLB) arrays with/without a regular
routing fabric [1-5] and perhaps some pre-diffused or
customized IPs and programmable I/Os. A CLB can be via-
or metal-configurable. A via-configurable CLB is less
flexible but uses fewer customizable mask layers. A regular
routing fabric has repetitive patterns pre-defined on the
higher metal layers. It is normally via-configurable and thus
has fewer customizable mask layers [6-9]. Some companies
even advocate using only one via layer to customize both
CLB and routing fabric [10]. As shown in Fig. 1, structured
ASIC embraces a large mid-section of programmability
spectrum. One end of the spectrum is cell-based ASIC with
non-programmable cells but programmable routing metals.
The other end is FPGA with SRAM-based programmable
cells and routing fabrics. The gaps between these two ends
are addressed in [2]. Structured ASIC can achieve a timing
performance comparable to that of a cell-based ASIC while
using much less power than that of an FPGA. It pays only the
cost of customizing mask layers for cells and routing and an
amortized mask cost for the remaining layers. It enables a
fast manufacturing turn-around time. Its regular routing
fabric is instrumental in improving manufacturability [11].

As an emerging design option, structured ASIC has many
problems related to designing of CLBs and routing fabrics as
well as tool development [12,13]. Especially, lack of tool
supports for cell library development, placement and routing,
logic synthesis, etc. has prevented structured ASICs from
being widely adopted. Tool development is closely related to
how CLBs are designed. Basically, a CLB should be
designed to leverage the existing tools as much as possible
and to reduce the numbers of customizable mask layers. Cell
and routing fabric programmability has a great influence on
tool development. Table 1 shows the programmability
choices made by the major vendors [1,3,10,12,14,15] and
research groups (the last four rows) [4,5,7]. This is by no
means an exhaustive list. The last column indicates whether

the same transistors in CLBs can be used to implement
combinational logic and sequential elements. As one can see,
most vendors choose metal programmability for cells and
routing fabrics. Such a choice incurs a least amount of efforts
for tool development. For example, a placer and a router for
standard cell designs can be customized for this kind of
structured ASICs. Conversely, a new router should be
developed if a via-programmable routing fabric is used.
Moreover, CLB layout should not complicate power/ground
network distribution. As for cell granularity, a new logic
synthesizer or a logic packer should be developed if a coarse
grained cell (CLB) is adopted. Besides, designing of CLBs
should also consider the following issues.

 Basic logic functions realized by a CLB.
 CLB composition capability.
 Transistor utilization of coarse grained CLBs.
 Library development efforts.

The above is by no means an exhaustive list but it
presents the issues closely related to our work. These issues
are co-related to each other. The basic logic functions
realized by a CLB depend on CLB granularity. What we
mean by a basic logic function is a logic function that has a
template in a cell library employed by a logic synthesis tool.
A coarse grained CLB, especially for a look-up table based
CLB, can be configured to implement many basic logic
functions. A fine grained CLB has a limited number of
realizable functions, but its composition capability enables us
to form more complex logic functions using more than one
CLB. CLB composition only uses the programmable layers
dedicated to CLBs for implementing a basic logic function.
Metal programmable CLBs have the highest composition
capability whereas via-programmable CLBs may have or not
have composition capability. A coarse grained CLB may pay
a large area penalty due to poor transistor utilization of CLBs.
Moreover, coarse grained CLB complicates the library
development task since library characterization should be
done for a huge number of basic logic functions that can be
realized by a CLB. Transistor utilization of coarse grained
CLBs also depends on whether the transistors not used for
combinational logic can be used to implement sequential
elements in a CLB. Poor utilization could occur if each
coarse grained CLB consists of a flip-flop and combinational
logic blocks but the flip-flop is not used in a design.
Conversely, fine grained CLB has better transistor utilization.
However, it pays more area penalty for isolating CLBs from
each other because more fine grained CLBs will be used to
implement the same design. Library development effort is
smaller for fine grained CLBs. Besides the above issues,
designing of a programmable fabric using CLBs should also
consider the relocating problem of an IP [14].

IEEE Computer Society Annual Symposium on VLSI

978-0-7695-3170-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ISVLSI.2008.50

381

Figure 1. Programmability spectrum of cell and routing fabric.

Table 1. Programmability choices.

Programmability Vendors/
Researchers

Grain
size Cell Routing fabric

Unified
c&s?

LSI Fine Metal Metal ?

eASIC Coarse SRAM-
based LUT Via No

Virage Logic Fine Metal Metal ?
NEC Coarse Metal Metal No
AMI ? Metal Metal ?

ChipX ? Metal Metal ?
Fujitsu ? Metal Metal ?
Faraday ? Metal Metal ?
Altera Fine Metal Metal Yes

ViASIC Coarse Via Via No
Triad Semi. ? Via Via ?
Synopsys [5] Coarse Via Via No

Marek- Sadowska et al. Coarse Via Via Yes
Pilleggi et al. Coarse Via Metal/Via No

Ours Medium Via Metal Yes

In this paper, we propose a medium grained via-
programmable CLB (VCLB). Our VCLBs along with either a
metal or a via-programmable routing fabric can be used to
construct a structured ASIC. Each VCLB has five pairs of P-
N transistors. These transistors can be configured into a logic
function with five or fewer inputs using M1-M2 vias.
VCLBs can be abutted to form a more complex function
using the jumpers at their both ends. The same VCLB can be
used to implement either combinational or sequential
elements. Power/ground (P/G) buses are placed on M2 to
facilitate the deployment of M3 power straps. They are
located at the top and bottom boundaries so that they can be
made wider by cell row abutment. We establish a design flow
primarily using commercial standard cell design tools. Our
own tools include a logic packer and a placement legalizer.
We create a 0.18um standard cell library based on our VCLB
to test our design flow and to evaluate the viability of our
VCLB. Experimental results show that our structured ASIC
fabric with programmable metals for routing achieves a delay
of 2.7 times, an area of 3 times, and a power of 1.5 times that
attained by the designs using a commercial standard cell
library. The method we propose here to evaluate the viability
of a structured ASIC fabric is very important. It is based on
the concept of pushing the delay envelope to see how small a
delay can be achieved using a programmable fabric.

The rest of this paper is organized as follows. Section 2
discusses some VCLB design problems. Section 3 presents
our programmable fabric. Section 4 describes our design
methodology. Section 5 presents some experimental results.
The last section draws conclusions and discusses future work.

2. Existing VCLBs

There are three types of VCLB. First, a VCLB can be an
FPGA-like look-up table (LUT). LUT-based VCLBs
proposed in [4] can be laid out in a way similar to standard
cells. Standard cell design style enables simple P/G
distribution. P/G buses between adjacent cells can be abutted
and P/G straps using higher metal layers can be easily
deployed to form a P/G network. The major problem of
LUT-based VCLBs is that each LUT must be accompanied

by a flip-flop. Since flip-flops are not used as frequently as
LUTs, the utilization of transistors in VCLBs is low. The
second type of VCLB is based on PLA structure [16]. PLA
enables implementation of two-level logic functions, but it
still needs flip-flops for implementing a sequential design.
The third type of VCLBs [7] uses series-parallel layout
structures to implement either combinational logic gates or
flip-flops. Since our work is closely related to this type of
VCLB, we will detail the work proposed in [7]. Two via-
configurable base-cells are proposed in [7]. One is called n-
ViaCC (or n-VCC for short) that consists of n pairs of P-N
transistors. These transistors can be configured to implement
n or fewer input functions. A 5-VCC in Fig. 2 is specially
proposed. One can refer [7] to see which logic functions can
be realized by a 5-VCC. A via in a 5-VCC can be installed at
the place where an M1 line and an M2 line intersect. All the
layers below M1 are pre-fabricated and M2 layer is with pre-
defined mask patterns. Only the M1-M2 vias can be used to
set the logic functions of a 5-VCC. The M2 P/G lines run
horizontally in parallel with diffusions and M1 wires run
vertically in orthogonal to M2 wires. The other base-cell is
called inverter array(INVA for short) which can be used to
implement inverters, XOR/XNORs, multiplexers, etc. An
INVA has three diffusion strips for each type of transistors.
A layout of INVA is shown in Fig. 2 where P/G lines are run
horizontally in M1. A 5-VCC and an INVA can be combined
to implement a flip-flop. An even larger programmable block
called VCGA as shown in Fig. 3 is also presented. A VCGA
has four basic logic elements (BLE). Each BLE has a 5-VCC
and two INVAs. Note that an INVA takes a larger area than a
5-VCC. There are some problems with this VCGA.

 The short P/G lines in a VCGA are laid out on two
different layers. Connecting them together, we must use a
large number of vias and M1/M2 wires. This drastically
increases the resistance of P/G network. Moreover, we
need to add extra vias to connect the P/G networks among
VCGAs, this further increases the P/G network resistance.
Note that the P/G lines in a VCC and an INVA are not
located at the boundaries so that row abutting to make
wider P/G lines is not possible.

 We need to implement a complicate P/G network using
higher metal layers (M3 or above) no matter whether the
P/G lines in VCCs and INVAs are configured to be
connected or not. Moreover, we can not freely drop a via
from an M3 P/G strap to an M1 P/G line because a short
to M2 signal wires in INVAs may occur.

 The number of functions that can be implemented by a
VCGA is large and some of them can be very complex.
Creating a library that consists of these functions for logic
synthesis, physical design, and timing analysis tools is
very difficult. No discussion of such efforts is made in [7].
In summary, the above drawbacks prevent VCGAs from

being used as standard cells. Yet another problem with
VCGA is that the fourth quadrant of a BLE does not have
any transistors. Our standard cell like VCLB does not have
the aforementioned problems.

382

Figure 2. Layouts of 5-VCC (top) and INVA.

Figure 3. A VCGA proposed in [7].

3. Proposed programmable fabric
Our programmable fabric has a two dimensional array of

VCLBs and a metal programmable routing fabric. We will
first describe our VCLB and then demonstrate the
configurability and composition capability of our VCLBs.

3.1. Layout of our VCLB
Fig. 4 shows the stick diagram and layout of our VCLB.

Our VCLB has five transistor pairs. The three transistor pairs
on the left are used to form CMOS logic and the two
transistor pairs on the right are used to form pass transistor
logic. CMOS logic is implemented using serial-parallel
structures. Pass transistors can be better used to implement
multiplexers and XOR/XNOR. Vias can be selectively
inserted at the junctions of M1 and M2 wires to implement a
logic function. Almost all the logic functions realized by a 5-
VCC can be implemented by our VCLB.

Despite of a resemblance between our VCLB and the 5-
VCC and INVA, our VCLB has the following features.

 Our VCLB is a monolithic block. It is asymmetric and can
not be flipped w. r. t. Y-axis for structured ASIC designs.

 The preferable routing directions of M1 and M2 are
vertical and horizontal, respectively.

 M2 P/G lines are located at the top and bottom boundaries.
Our VCLBs can be abutted seamlessly to form a cell row.
A cell row can be flipped w. r. t. X-axis so that it can abut
the rows above and below it to form wider P/G lines.

 M3 (or high layer) P/G straps can be freely deployed
above the core area because they can be connected to the
M2 P/G lines in the cells without any restriction.
Basically, what can be done for a traditional standard cell
design can also be done for a design based on our VCLBs.

 The I/O pins are the short vertical M2 wire segments
located at the central strap of the VCLB. They are on-grid
and have enough space for via doubling. The unused
inputs need not be tied to P/G because any floating input

does not have a chance to create a short circuit from
power to ground. However, a choice of connecting a pin
to P/G can always be made.

 A VCLB has five long M2 wires for intra VCLB
connections and three M1 jumpers at both ends for inter
VCLB connections. The jumpers enable the composition
of our VCLBs so that a more complex logic function can
be implemented using several VCLBs.

 Creating a cell library using our VCLB is considerably
easier than that using VCGA given in Fig. 3 because the
number of logic functions that can be implemented by our
VCLB is much smaller.

Our VCLB with respect to power planning is similar to that
presented in [5]. However, there are two important
differences. One is that each CLB in [5] must contain a fixed
ratio of combinational logic elements to sequential elements.
The other is that the CLB in [5] lacks composition capability.

Figure 4. Proposed VCLB.

3.2. Configurability and composition capability
Here, we will show the configurability and composition

capability of our VCLBs. The layout in Fig. 5 (left) is a 2-to-
1 multiplexer. The third pair of P-N transistors is used to
create the complement of S0 and the two pairs of P-N
transistors on the right are used to form two transmission
gates. Two pairs of transistors are unused. Fig. 5 (center)
shows a layout for AOI221X4. The layout consists of two
VCLBs. A buffer of 4X driving capability is implemented in
one VCLB. Fig. 5 (right) shows a layout of a positive edge
triggered D flip-flop with active low reset. The layout
consists of three VCLBs. From the above two layouts, one
may find that the jumpers between two VCLBs have been
employed to send signals from one VCLB to another. Note
that more complex functions can be realized using a various
number of VCLBs. Large drive inverters and buffers can be
realized in a similar way. The VCLB can be modified to
provide more jumpers and long wires for inter cell
connections. Our library will have logic functions that uses
two or more VCLBs. A multi-VCLB logic block can be
freely placed at any legal position as long as it is confined
within a cell row. That is to say, it is relocatable. Besides,
more than one basic logic function can be packed into the
same VCLB. Later, we will present a logic packer that carries
out the packing task for a synthesized design.

383

Figure 5. Layout of 2-to-1 multiplexer (left), layout of AOI221X4 (center), and layout of a D flip-flop.

4. Design methodology

Here, we present a design methodology for structured
ASICs. Fig. 6 shows a simple flow of how to construct a
standard cell library (the shaded part) and perform chip
designs using a cell library based on our VCLB. To create a
cell library, we first define a via map for each logic function.
We install the so-defined vias on a VCLB to complete the
layout of a logic function. We use Mentor’s Calibre to extract
post-layout parasitics and the tool in [17] to perform post
layout timing characterization. Once this is done, we create a
library called DC cell library for Synopsys Design Compiler.
In DC cell library, since the transistors in the VCLBs for
simple logic functions are not fully utilized, we hand-pack
two logic functions into a single VCLB to form a multi-
function packed block (MFPB). Determining which basic
logic functions should be put into an MFPB is very
complicate. We only combine the most frequently used logic
functions into one MFPB. Accordingly, we have to create a
layout for each MFPB. Once this is done, we create a library
called SOC-E cell library for Cadence SOC Encounter. SOC-
E cell library has packed versus non-packed logic blocks.

A design flow mostly using commercial tools such as
logic synthesizer, placer, router, timing analyzer, etc. is also
shown in Fig. 6. The tools developed by ourselves are a logic
packer and a placement legalizer.

4.1. Logic packer
Our logic packer places two logic functions into a

VCLB. It has the following steps.

Figure 6. Library and chip design methodology.

Figure 7. An example of logic packing.

Step 1: A graph is created. A non-fully used VCLB is
modeled as a vertex. An edge between two vertices is created
if the two corresponding VCLBs can be combined into one
VCLB. Any two VCLBs can be combined into one VCLB if
there is a corresponding MFPB in the SOC-E cell library.
Each edge is assigned a weight using the approach proposed
in [18]. The edge weight represents how strongly the two
related VCLBs should be connected.

Step 2: We first perform a maximum weight bipartite
matching on a subgraph formed by VCLBs, each of which
implements either a 4-input or 1-input basic logic function.
Once this is done, any two matched VCLBs are combined
into one VCLB and the two vertices corresponding to the two
original VCLBs are removed from the graph. Any 4-input
VCLB that can not find a matching should be removed from
the original graph. This step is repeated for a subgraph
comprised of 3-input and 2-input VCLBs and a subgraph
comprised of 3-input and 1-input VCLBs.

Step 3: We perform a general maximum weight matching
on a subgraph comprised of only 2-input VCLBs, 2-input and
1-input VCLBs, and only 1-input VCLBs, respectively.

Fig. 7 shows a logic packing example. Fig. 7(a) is the
original graph. Fig. 7(b) is the matchings for the subgraph
comprised of 3-input VCLBs and 2-input VCLBs. The graph
in Fig. 7(c) is obtained by deleting the vertices with
matchings and the un-matched vertices that correspond to 3-
input VCLBs. The matchings in Fig. 7(c) are for 2-input
VCLBs only. We obtain an optimal solution for the example
in terms of the number of matchings and total edge weights.

4.2. Placement legalizer
Our placement legalizer takes the result from a standard

cell placer as input and determines a legal position for each
cell such that the total displacement of all cells from their
original positions is minimized. We assume that the order of
the cells in a cell row is preserved. The legalizer is run for the
cells in each row. A legal position for a cell in a row should
be an integral multiple of VCLB width. This problem is
formulated as a minimum weight bipartite matching problem.
We create a bipartite graph as follows. A cell is modeled as a
vertex in one group. The vertices in this group is denoted as
Ci, i=0, n-1. Each of the legal positions on a row is modeled
as a vertex in the other group. The vertices in this group is
denoted as Rj, j=0, m-1. An edge between Ci and Rj is created
if Rj is a permissible position for vertex Ci. A permissible
position for Ci is a legal position so that there is at least a
placement solution for all the cells in a row if Ci is placed at
that position. Let the width of Ci be wi, the total width of the
cells to the left of iC be i , the total width of all the cells to
the right of iC be 'i , and the length of a row be r , all in
terms of the VCLB width. Then, the permissible position for

iC starts from i and terminates at '()r i iw− + . A weight
is assigned to each edge between Ci and its permissible
position Rj. The weight is set to the distance between the
original position of Ci and Rj. Fig. 8(a) shows a cell row with

384

cells C0 and C1 whose positions are originally at 7.25 and 21.
The width of a VCLB is 10. The permissible positions are 0,
10, 20 for C0 and 10, 20, 30 for C1, respectively. Fig. 8(c)
shows a minimum weight bipartite matching which places C0
at 10 and C1 at 20, with a minimum weight of 3.75.

Figure 8. An example of legalizing cell positions.

5. Experimental results

We have implemented a cell library using our VCLB for
evaluating the design methodology described in Fig. 6. When
implemented using 0.18um process technology, our VCLB
has an area of 78 um2. The library consists of 105 unpacked
cells and 73 packed cells. We selectively implement some
functions that are found frequently used by a logic synthesis
tool. Most of the logic functions except inverter, buffer, and
flip-flop have driving capability of 1X, 2X, 4X. Buffer has
driving capability from 1X up to 16X and inverter has
driving capability from 1X up to 20X. D flip-flop with reset
has driving capability of 1X and 2X. Power and timing data
of each cell are characterized using HSPICE.

Two kinds of experiments are performed. One uses our
library (YZUL for short) for doing chip design. The other
uses a commercial standard cell library (STDL for short).
Both libraries are based on the same 0.18um process
technology. The same parameter settings such as power ring
width, core utilization, etc. are used to design chips
regardless of which library is used. The designs using YZUL
are routed without using M1 and M2 layers whereas those
using STDL are routed with M1 and M2 layers. The large
benchmark circuits from ISCAS89 and ITC99 are used in our
experiments. Our experiments are carried out in the
following manner. First, we use Synopsys Design Compiler
to synthesize each circuit without any timing requirements
but aiming only to minimize the area. We then find the
longest path delay for each circuit after the circuit is routed.
We call such a delay base_delay. We then perform logic
synthesis for each circuit with clock period specified as
0.9*base_delay, 0.8*base_delay, 0.65*base_delay,
0.5*base_delay, 0.35*base_delay, 0.2*based_delay, and
0.1*based_delay, respecyively. The reason for carrying out
experiments in this way is to see how far we can push the
delay envelope of the designs using each library.

Tables 2 and 3 show the longest path delays of the post-
routed circuits respectively designed with both libraries. The
numbers of cells and nets of the circuits synthesized without
timing requirements using STDL are also given in Table 2.
The columns denoted by “1” give the base_delays. The
columns denoted by “0.9” give the longest path delay for the
cases with clock period specified as 0.9*base_delay. Tables 4
and 5 show the cell areas of the designs. Tables 6 and 7
present the total power dissipation. Table 8 summarizes the
delay, area, and power data. The column “Delay ratio” gives
the ratio of the smallest longest path delay of a circuit using
YZUL to that of the same circuit using STDL. For example,
the small longest path delay of b14 using STDL is 4.9ns and
it is 10.5ns for the case using YZUL. Thus, we have a ratio
of 2.1. The area and power ratios are calculated accordingly.

For example, the total area of b14 using STDL corresponding
to the case with the smallest longest path delay is 283000
um2 and it is 679000 um2 for the case using YZUL. Thus, we
have an area ratio of 2.4. Power ratio is similarly calculated.
The power ratios of some circuits are smaller than 1. This
does not mean that the circuits using YZUL consume less
power because the circuits using YZUL have their delays
several times more than that of the circuits using STDL. If
we push the delay envelope, the delay of our structured ASIC
designs is on average 2.7 times that of their standard cell
counterparts at the expense of 3 times area and 1.5 times
power. These data serve as achievable lower bounds for the
case of using a via-programmable routing fabric.

The last two columns in Table 8 present some interesting
data about achievable delay envelope. A value in the last
column is the ratio of the largest longest path delay of a
circuit using YZUL to the smallest longest path delay of the
same circuit also using YZUL. A value in the column “STDL
max/min delay ratio” is calculated similarly. We find that the
circuits using STDL have much larger ratios. This implies
that a standard cell library can enable more aggressive delay
optimization than our YZUL. This is an important
observation which gives a clear direction for the future
research on CLBs. Part of the reason why YZUL achieves a
smaller ratio is that each cell in YZUL has much more
parasitic capacitance than that in STDL and thus has a larger
cell delay. As a result, the total cell delay takes a dominant
part of critical path delay of a circuit using YZUL so that its
critical path can not be effectively optimized.

Transistor utilization of the VCLBs in the circuits using
YZUL is on average 73%. This is smaller than that reported
in [7]. Part of the reason for this is that we do not pack the
un-related VCLBs.

Making a comparison of our results to the previous works
[5,7] is difficult because they do not perform experiments
like ours, i.e., not performing experiments to push delay
envelope. The comparison depends on which point on the
delay curve is used, whether layout parasitics are considered,
what kinds of tools are used, etc. However, if a comparison
must be made, our YZUL on average achieves a delay-area
product of 8.0 and a delay-power product of 3.9 whereas the
work in [5] from an EDA company on average achieves a
delay-area product of 14.8 and a delay-power product of 5.4.
Note that the work in [5] has a via-programmable routing
fabric rather than a metal programmable routing fabric like
ours. The work in [7], having a metal programmable routing
fabric, achieves a delay-area product of 2.87 and a power-
delay product of 1.56. However, these data are obtained
without performing detailed routing.

Table 2. Longest path delay of designs using STDL (ns).
 Cells Nets 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1

s35932 3929 4553 11.2 12.3 13.0 11.4 12.4 9.4 13.2 2.0*
s38417 5033 5189 4.9 3.5 3.4 3.2 2.9 2.8 2.8 2.7
s38584 6067 6474 36.7 4.7 5.0 5.0 5.4 4.9 3.9 3.1

b14 2217 2666 19.7 14.3 13.9 11.4 6.8 6.5 4.9 5.6
b15 3127 3448 35.3 14.6 12.9 14.6 12.2 10.1 8.3 13.0
b17 10290 10509 28.7 12.8 12.7 13.4 11.6 16.0 19.1 14.3
b18 28002 30647 29.2 17.7 16.9 15.3 15.0 10.3 8.6 13.2
b19 58545 60412 36.6 20.0 18.1 16.5 16.0 13.6 17.2 13.6
b20 4674 5389 19.8 15.3 14.9 12.4 7.0 9.8 6.1 5.8
b21 4561 5263 20.0 15.0 15.7 12.1 7.6 7.0 5.4 5.5
b22 6894 7966 21.0 17.2 17.4 16.0 10.3 9.0 5.3 6.3
Ave 23.9 13.4 13.1 12.0 9.7 9.0 8.6 7.7

* This is not an error. This delay value is achieved due to having proper fanout
optimization.

385

6. Conclusions and future work
In this paper, we have proposed a standard cell like

VCLB such that existing tools for standard cell designs can
be leveraged to design a structured ASIC based on our
VCLB. Our approach achieves a delay of 2.7 times, an area
of 3 times, and a power of 1.5 times that attained by the
designs using a commercial standard cell library if we push
the delay envelope of the designs. Currently, we are working
on a via-programmable routing fabric and developing a
router for it. A clock tree synthesizer and some timing and
power optimization methods are yet to be developed.

Table 3. Longest path delay of designs using YZUL (ns).
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1

s35932 31.7 25.8 35.8 22.2 32.8 21.7 32.6 11.4
s38417 8.0 7.3 7.7 6.8 6.3 6.5 6.3 6.9
s38584 21.1 8.3 7.1 8.8 7.5 6.6 5.8 6.7

b14 21.6 16.0 13.6 13.4 10.5 11.1 11.6 12.4
b15 66.9 20.6 20.7 20.5 19.2 16.5 13.2 14.4
b17 44.7 19.6 21.0 18.7 17.7 15.5 17.0 16.2
b18 53.7 24.8 29.2 28.0 28.1 26.0 36.7 37.6
b19 55.4 27.1 31.4 30.9 28.2 20.9 22.1 29.4
b20 22.2 15.6 15.8 17.2 17.0 21.1 20.2 18.9
b21 28.3 23.4 15.3 15.4 16.0 16.4 19.1 17.5
b22 31.9 30.3 23.4 21.3 24.1 26.7 31.9 30.7
Ave 35.0 19.9 20.1 18.5 18.8 17.2 19.7 18.4

Table 4. Total cell area of designs using STDL (x1000um2).
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1
s35932 180 182 182 182 182 182 191 268
s38417 180 196 205 232 273 293 309 308
s38584 173 169 169 169 169 169 170 183

b14 88 123 143 169 102 130 283 276
b15 116 121 122 121 121 128 166 206
b17 337 360 360 360 368 415 522 634
b18 953 996 1003 1007 1099 1079 1595 1694
b19 1880 1938 1944 1970 1996 2350 2640 3022
b20 170 244 291 353 214 331 535 560
b21 166 237 268 439 209 316 566 595
b22 248 343 363 473 322 438 810 803
Ave 408 446 459 498 459 530 708 777

Table 5. Total cell area of designs using YZUL (x1000um2).
 1 0.9 0.8 0.65 0.5 0.35 0.2 0.10

s35932 783 787 787 787 787 787 788 820
s38417 715 780 809 915 1038 1094 1153 1115
s38584 706 699 698 698 701 713 812 915

b14 274 468 499 549 679 871 1044 951
b15 434 493 492 493 493 493 596 762
b17 1237 1466 1467 1474 1488 1712 2102 2189
b18 3236 4032 4077 4152 4341 4456 5801 6089
b19 6336 8024 8104 8251 8655 8659 11210 11905
b20 544 996 989 1291 1594 1927 2040 1989
b21 531 1413 929 993 1366 1911 2012 2049
b22 801 1746 1772 1502 1815 2488 2917 2935
Ave 1418 1900 1875 1919 2087 2283 2771 2884

Table 6. Power dissipation of the designs using STDL (mw,
at 100MHZ, 20% toggling rate).

 1 0.9 0.8 0.65 0.5 0.35 0.2 0.1
s35932 3.6 3.3 3.4 3.4 3.3 3.4 3.4 9.4
s38417 5.6 6.0 6.5 7.6 9.2 9.9 10.8 10.8
s38584 5.1 5.5 5.5 5.5 5.5 5.4 5.6 6.2

b14 2.9 4.1 5.0 5.8 3.5 4.6 12.2 11.9
b15 3.7 3.8 3.8 3.8 3.8 4.0 5.3 7.6
b17 12.6 12.8 12.8 12.8 13.0 14.2 19.9 25.3
b18 32.6 36.9 36.9 36.9 39.7 38.8 61.5 66.3
b19 70.0 73.1 73.1 74.3 74.4 82.6 98.3 118.8
b20 5.9 8.7 10.8 12.5 7.6 12.8 22.9 24.8
b21 5.8 8.1 9.6 12.7 7.4 12.1 24.4 26.7
b22 8.7 11.8 13.3 17.9 12.1 16.9 33.9 36.0
Ave 14.2 15.8 16.4 17.6 16.3 18.6 27.1 31.3

Table 7. Power dissipation of the designs using YZUL (mw,
at 100MHZ, 20% toggling rate).

 1.0 0.9 0.8 0.65 0.5 0.35 0.2 0.1
s35932 15.8 17.4 17.4 17.5 17.5 17.8 17.4 19.6
s38417 15.7 15.5 15.7 16.7 18.0 18.5 19.3 19.6
s38584 14.6 15.8 15.9 15.7 15.7 15.9 17.1 17.9

b14 4.8 6.7 7.3 8.4 10.0 12.7 15.2 13.8
b15 8.3 9.0 9.0 8.8 8.9 9.3 10.2 11.7
b17 25.1 28.4 28.2 29.1 28.5 31.8 35.7 35.1
b18 65.8 76.9 78.1 79.1 80.9 79.5 96.9 96.7
b19 128.1 154.3 157.6 158.6 161.5 156.8 188.5 193.0
b20 9.9 15.3 15.1 19.5 23.9 27.0 29.6 28.8
b21 9.5 21.3 14.2 15.0 20.8 27.8 29.0 29.4
b22 14.9 27.6 26.6 23.5 28.3 38.1 42.8 44.5
Ave 28.4 35.3 35.0 35.6 37.6 39.6 45.6 46.4

Table 8. Delay, area, and power ratio

Delay
ratio

Area
ratio

Power
ratio

Delay
*powe

r

Delay
*

area

STDL
max/min

delay ratio

YZUL
max/min

delay ratio
s35932 5.8 3.1 2.1 12.2 17.9 6.8 2.8
s38417 2.4 3.7 1.8 4.2 8.8 1.8 1.3
s38584 1.9 4.4 2.8 5.2 8.2 11.9 3.7

b14 2.1 2.4 0.8 1.8 5.2 4.0 2.0
b15 1.6 3.6 1.9 3.1 5.7 4.2 5.1
b17 1.3 4.6 2.4 3.3 6.2 2.5 2.9
b18 2.9 2.5 1.3 3.6 7.3 3.4 2.2
b19 1.5 3.7 1.9 2.9 5.7 2.7 2.6
b20 2.7 1.8 0.6 1.7 4.8 3.4 1.4
b21 2.8 1.6 0.6 1.7 4.7 3.7 1.8
b22 4.0 1.9 0.7 2.8 7.5 4.0 1.5
Ave 2.7 3.0 1.5 3.9 8.0 4.4 2.5

7. References
[1] HardCopy Structured ASICs: ASIC gain without the pain.
http://www.altera. com/products/software/flows/asic/qts-structured_asic.html
[2] B. Zahiri, “Structured ASICs: opportunities and challenges,” ICCD, 2003,
pp. 404-409.
[3] K. C. Wu, Y. W. Tsai, “structured ASIC, evolution or revolution?” ISPD,
pp.103-106, 2004.
[4] L. Pileggi et al., “Exploring regular fabrics to optimize the performance-
cost trade-off,” DAC, 2004, 782-787.
[5] N. V. Shenoy, J. Kawa, R. Camposano, “Design automation for mask
programmable fabrics,” DAC, 2004, pp. 192-197.
[6] C. Patel, A. Cozzie, H. Schmit, and L. Pileggi, “An architectural
exploration of via patterned gate arrays,” ISPD, 2003, pp. 184–189
[7] Y. Ran and M. Marek-Sadowska, "Designing via-configurable logic blocks
for regular fabric", IEEE Trans. on VLSI Systems, Vol. 14, No. 1, Jan. 2006.
[8] A. Koorapaty, L. Pileggi, and H. Schmit, “Heterogeneous logic block
architectures for via-patterned programmable fabrics,” LNCS 2778, 2003, pp.
426–436.
[9] Y. Ran and M. Marek-Sadowska, “Via-configurable routing architectures
and fast design mappability estimation for regular fabrics,” IEEE Trans. on
VLSI Systems, Vol. 14, Sept. 2006, pp. 998-1009.
[10] A. Levinthal and R. Herveille, “FlexASIC structured array: a solution to
the DSM challenge,” DesignCon 2005.
[11] V. Kheterpal, et al., “Design methodology for IC manufacturability based
on regular logic-bricks,” DAC, 2005, pp.192-197.
[12] D. D. Sherlekar, “Design considerations for regular fabrics,” ISPD, April
18-21,2004, pp.97-102.
[13] A. Koorapaty, et al. “Exploring logic block granularity for regular
fabrics,” DATE, 2004, pp. 1468-473.
[14] White paper, “RapidChip technology: fast custom silicon through
platform-based design,” LSI Logic, 2004.
[15] T. Okamoto, T. Kimoto, N. Maeda, “Design methodology and tools for
NEC electronics’ structured ASIC ISSP,” ISPD, 2004, pp.90-96.
[16] F. Mo, R. Brayton, “PLA-based regular structures and their synthesis,”
IEEE Trans. on TCAD, Vol. 22, No. 6, June 2003, pp.723 - 729.
[17] Shu-Ren Ker, “An Automatic Library Development System,” Master
Thesis, Yuan Ze University, Taiwan, June 1997.
[18] B. Hu and M. Marek-Sadowska, “Wire length prediction based clustering
and its application in placement,” DAC, 2003, pp. 800-805.

386

