
Implicit Social Network Model for Predicting
and Tracking the Location of Faults

Ing-Xiang Chen∗, Cheng-Zen Yang∗, Ting-Kun Lu∗, and Hojun Jaygarl†

∗Yuan Ze University, Chungli, Taiwan, 320

† Iowa State University, Ames, IA 50011

∗{sean,czyang,kylelu}@syslab.cse.yzu.edu.tw †{jaygarl}@cs.iastate.edu

Abstract— In software testing and maintenance activities,
the observed faults and bugs are reported in bug report
managing systems (BRMS) for further analysis and repair.
According to the information provided by bug reports,
developers need to find out the location of these faults and
fix them. However, bug locating usually involves intensively
browsing back and forth through bug reports and software
code and thus incurs unpredictable cost of labor and
time. Hence, establishing a robust model to efficiently and
effectively locate and track faults is crucial to facilitate
software testing and maintenance. In our observation, some
related bug locations are tightly associated with the implicit
links among source files. In this paper, we present an
implicit social network model using PageRank to establish
a social network graph with the extracted links. When a
new bug report arrives, the prediction model provides users
with likely bug locations according to the implicit social
network graph constructed from the co-cited source files.
The proposed approach has been implemented in real-world
software archives and can effectively predict correct bug
locations.

I. INTRODUCTION

In today’s software testing and maintenance processes,
when errors are found, they are generally reported in bug
report managing systems (BRMS) for further bug tracking
and debugging [22], [30]. In a conventional process of
debugging, software engineers need to identify the bug
locations from software code, and then fix them. Since
bug locations are discovered according to the information
of bug reports, intensive search, which usually involves
browsing back and forth through bug reports and software
code, is required to locate the bug. Accordingly, tech-
nology that can assist software engineers to effectively
identify the location of bugs is highly regarded.

Actually, many faults do not come alone, but cooccur
with other related faults. This has been justified in the
past study [12]. Based on our investigations, there further
exist dependency relationships among the co-occurred
locations that are cited by the same bug reports. Hence,
historical bug information that indicates similar bug loca-
tions can be further used to predict future bugs.

Such analysis is not the first exploration of predicting
faults based on the assumption of bug dependencies. A re-
cent study [25] has tried to employ the dependency graph
of the subsystems to predict the number of faults based

on the assumption that the complexity of a subsystem’s
dependency graph correlates with failures. The authors
further applied the concept adapted from the classical
graph theory to construct the dependency graph and used
network measures to predict faults [27].

Beside the dependencies between subsystems and ele-
ments, however, more implicit relationships embedded be-
tween bug reports and source files can be investigated. For
example, the implicit relationships between bug locations
that are co-cited by the same bug reports can be further
modeled as a co-citation social network to help predict
faults. Based on this assumption, a co-citation graph of
bug locations can be constructed according to their co-
cited relationships. Figure 1 illustrates a snippet of the co-
citation graph constructed from Subversion (SVN) [30].
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Fig. 1. A snippet of the SVN co-citation graph.

In the co-citation network graph, the potential bug
locations appear as vertices, and their implicit co-citation
relationships are denoted by dotted bidirectional edges
connecting each co-cited pair. Since some related faults
usually affect each other, the bidirectional edges in the
co-citation graph can further imply where the correlated
side effects will happen. Through the accumulated links
connecting different co-cited bug locations, the fault-
prone locations and their correlations can be modeled as
a social network graph.

In this paper, we first investigate the nature of the co-
citation graph between bug locations. Since the implicit
links between the co-cited locations imply that these
locations are relevant, we consider building a co-citation
graph connected with bidirectional links to denote their



Fig. 2. A sample bug report of ArgoUML in Tigris [30].

semantic relevance. Accordingly, we model the co-cited
bug locations as a social network graph, and employ
information retrieval (IR) techniques to predict the po-
tential location of faults. This paper makes the following
contributions:

• It demonstrates the concept of modeling the co-cited
bug locations into a social network graph.

• It defines a PageRank-based mechanism to rank the
fault-prone locations. The co-citation links between
bug locations are used to calculate the score of each
fault-prone location.

• It designs, implements, and evaluates the implicit
social network model for predicting bug locations.

• It can support good scalability to other larger projects
without many changes.

The rest of this paper is organized as follows. Section 2
introduces the background behind the problem and related
knowledge about bug report processing. Section 3 reviews
the related work in bug prediction literature. In Section
4, we present the implicit social network model for
predicting and tracking bug locations. Section 5 depicts
the case study and the evaluation results. Finally, Section
6 concludes the paper and outlines the future work.

II. BACKGROUND

To understand the proposed approach, background
knowledge involves problem statement and bug report
processing. The related background knowledge is de-
scribed as follows.

A. Problem Statement

As in common debugging procedures, the bug locations
corresponding to a bug report are usually predicted from
version archives and bug report systems. To discover
the potential bug locations L, the prediction of L can

be denoted as P (B | L), where an incoming bug
report B is examined and predicted according to its
meta-information. The predicted relationships between
bug reports and locations can be viewed as 1-to-many
mappings since a bug may involve several code locations.
Hence, bug prediction is defined as providing users with
a recommendation list of possible bug locations and
establishing the traceability links between the bug reports
and their locations. This study predicts the location of
faults on the level of files.

As contrasted with the explicit links between bug
reports and fixed locations, the implicit links between co-
cited locations may potentially indicate the side effects
of incoming bugs. The potential location of faults is
thus predicted by establishing the implicit co-citation
graph and comparing the similar fixed locations with their
ranking in the graph. More formally, this study follows
two fundamental hypotheses to predict the location of
faults.

• Hypothesis 1: The location of relevant faults can be
tracked by the co-cited dependency of bug locations.

• Hypothesis 2: New bug locations can be predicted
by comparing similar bug reports and their fixed
locations.

B. Bug Report Processing

Generally, bug reports are composed of different meta-
information and textual contents to describe the faults
in bug report managing systems (BRMS). To realize
automated bug retrieval, the knowledge about bug report
and its handling process is required.

1) The Compositions of Bug Reports: A bug report
generally contains some required meta-information and
short descriptions or error messages to denote the fault.
After a bug report is submitted to the BRMS, there may



be some comments or responses from different users ap-
pended to the original bug report. Therefore, a bug report
contains more detailed textual descriptions or comments
about the same bug. Figure 2 illustrates a sample bug
report of ArgoUML stored in Tigris [30].

As the example in Figure 2, different types of meta-
information are recorded to describe a bug such as Issue#,
Summary, Reporter, etc. More descriptive information
such as the descriptions and comments can also be
appended in a bug report. Besides, other types of files
such as software code and screenshots can be attached
in the bug report to facilitate the explanation of error
messages.

2) The Process of Handling Bug Reports: In the pro-
cess of handling a bug report, bugs are supervised in
different phases before closed [19]. Figure 3 depicts the
processing flow of bug reports. When a fault or a bug is
discovered, a bug report is wirtten and submitted to the
BRMS. After a bug is reported in the BRMS, the report
will be analyzed by an analyst, and the bug is assigned
to an appropriate developer to fix it. Meanwhile, if the
bug has been fixed or has been reported before, it will be
moved to the corresponding fixed phase. After the fixed
bug is tested and verified, the bug report will be closed.
Therefore, a bug report will be given different status of
resolution in its life cycle [1].

Failures/Bugs Bug reportsBug reports

Bug Assigned

Bug Fixed

Bug Verified

Report Closed

Report Analysis

Fig. 3. The processing flow of bug reports.

III. RELATED WORK

Over the past years, several approaches have been
proposed to support automated identification of bug loca-
tions. These approaches can be briefly categorized as the
following types: predicting faults from software change
and cached history [8], [9], [12], [15], predicting bug
locations with learning-based approaches [3], [17], [16],
[18], [28], and defect detection using dependency graph
and network measures [25], [27].

A. Predicting Faults from the History of Software Change
and Fixed Cache

Graves et al. first attempted to predict modules that
were more fault-prone by their changes and ages [8]. This

model successfully improves the prediction accuracy by
giving higher weights to recent changes over older ones.
Therefore, their approach can predict the distribution
over modules of the incidences of faults using change
management data from a very large, long-lived software
system.

Nagappan and Ball observed that code churn can mea-
sure the changes made to a component over a period of
time and quantify the extent of software change [15].
They further proposed a technique to early predict system
defect density using a set of relative code churn measures
instead of absolute code churn measures. The authors
conducted experiments over Windows Server 2003 bina-
ries, and the experiments show that the proposed model
achieves the prediction accuracy of 89%. However, more
fine-grained predictions still need further investigations.

Hassan and Holt first proposed an approach called
the top-ten list to predict fault-prone modules [9]. They
were inspired by the idea of using a limited resource
cache in file system and used a dynamically main-
tained cache to predict the most fault-prone modules.
In their caching scheme, four strategies were separately
considered, namely, modules that were most frequently
modified, most recently modified, most frequently fixed,
and most recently fixed. According to their experimental
results over large open-source projects, the best Hit Rate
(HR) can be achieved between 20% and 54% to the level
of modules.

More recently, Kim et al. used the cached history to
predict the location of faults [12]. They followed the
assumption that faults usually cooccur with several related
faults. In their experiment, they used a cache of 10% of
the source files to predict bug locations from file level to
entity level and respectively achieved the best accuracy
of 95% and 72%. The results show that their FixCache
approach achieves significant prediction improvements in
a more fine-grained level.

B. Predicting Bugs with Learning-based Techniques

Ostrand et al. predicted the largest number of faults
to the level of files with a negative binomial linear
regression model [3], [17]. Their prediction model selects
20% files in each release of two systems for evaluation.
The performance with the proposed regression model can
predict the hightest number of faults between 71% and
92%, with the overall average being 83%.

Wong et al. used a back-propagation neural network
(BPNN) model to train the inputs and the corresponding
outputs of a program to further predict the suspiciousness
of each executable statement. By learning the input-
output relationship of a program, the proposed BPNN
model can effectively predict the potential statements that
contain faults by ranking their suspiciousness. Currently,
the proposed BPNN model was only applied to programs
with a single bug. Although a method of clustering failed
executions has been mentioned to predict multiple bugs,
the effectiveness of extending the proposed BPNN still
needs to be verified.



Neuhaus et al. analyzed the import structure of software
components and used a support vector machine (SVM)
model to learn and predict vulnerable components in
large software systems [16]. They further predicted which
imports are most important for a component to be vulner-
able. Their SVM-based predictor can correctly discover
about half of all vulnerable components, and about two
thirds of all predictions are correct.

Premraj et al. proposed a novel approach of using SVM
with a usual suspect list to improve the prediction of
potential bug locations [18]. They borrowed an idea from
the criminology that the locations frequently reported as
bug locations are regarded as the suspects in the usual
suspect list. Premraj et al. further extracted features from
bug reports and used a binary SVM model to train the
historical bug reports with the usual suspect list. Their
prediction results show that SVM with usual suspect list
can achieve the best accuracy of 90% in smaller projects
and 60% in larger projects.

C. Using Dependency Graph and Network Measures

Zimmermann and Nagappan investigated the dependen-
cies of Windows Server 2003 to predict the number of
failures [25]. They argued that an increase in complexity
is accompanied by an increase in failures. Their analysis
further shows that binaries in part of cycles had on average
twice as many failures as the other binaries. Therefore,
they computed the complexity of a subsystem’s depen-
dency graph with classical graph theory and predicted the
number of failures at statistically significant levels.

In advance, Zimmermann and Nagappan applied net-
work measures to the constructed dependency graph and
predicted the number of failures [27]. They found the
recall of using network measures to predict bugs is by
10% higher than using models built from the previous
complexity metrics. Furthermore, network measures could
identify twice the binaries that the Windows developers
considered as critical.

In summary, previous approaches have explored dif-
ferent aspects of ways to predict the potential location
of faults. The history of software change is important
evidence to discover the possible location of faults. Re-
gression models and state-of-the-art learning techniques
such as BPNN and SVM have been studied to learn past
debugging knowledge and are practical to predict bugs
with different strategies. The idea of using dependency
graph with network measures has also been proved to
be effective for bug prediction. However, the implicit co-
citation relationships between bug locations have not been
explored. In this study, we thus propose a novel approach
using implicit social network model to predict and track
the possible location of faults.

IV. IMPLICIT SOCIAL NETWORK MODEL

The proposed social network model for predicting and
tracking bug location is based on implicit link analysis
utilizing the co-citation links embedded between bug
reports and source files. This approach is based on an
important assumption that if there are two links pointing

to the source location u and v from a bug report r, the
bug report r indicates that the location u and v are both
associated with the reported faults, and there exists a co-
cited relationship between u and v. Implicit bidirectional
links between u and v are added to denote the mutual co-
citation. Since u and v can be further referred by other
bug reports, a directed co-citation network is established
through the implicit links between each co-cited location
pair.

Therefore, the location of faults can be modeled as a
directed co-citation graph G = (V ,E), where

• V = { si | 1 ≤ i ≤ n } is the set of vertices
representing the potential source location of faults,

• lij ∈ E denotes the implicit links within the source
location si and sj ,

• and each implicit link (i,j) ∈ E is associated with
P (si | sj) denoting the conditional probability of sj

to be co-cited by the given location si.

In the implicit social network model, a PageRank-
based algorithm [4] is presented to compute the ranking
of the predicted location of faults. PageRank (PR) is
adopted rather than other known social network models
such as HITS [13], because PR can relieve the problems
of nepotism and topic drift by weighting each link to
the quality of the location containing the link [10], [5].
Furthermore, a damping factor is considered in PageRank
to further predict the location that has never been fixed
before. In the following subsections, we illustrate the
proposed implicit social network model with a simple
example.

A. Constructing a Co-citation Graph with Implicit Links

Based on the assumption mentioned above, the po-
tential location of faults can be modeled as a directed
graph G = (V ,E) according to the citation links from
bug reports to their corresponding location of faults. To
build up the co-citation graph, explicit co-citation links
between bug reports and source locations are transformed
into a directed graph with implicit links between each co-
cited pair of locations. Figure 4 shows a simple example
of constructing a co-citation graph with implicit links
between the location pairs.

L1
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L4

L5

L1

L2

L4 L5

L3

BR#1

BR#2

BR#3

Fig. 4. An example of constructing a small co-citation graph with
implicit links.

In Figure 4, for explicit links from BR#1 to location
L1, L2, and L5, the proposed approach generates location



pairs (L1, L2), (L1, L5), and (L2, L5). Therefore, the
possible pairs are connected by the directed implicit links
lL1L2, lL2L1, · · · , lL2L5, lL5L2. Likewise, explicit links
from BR#2 and BR#3 generate the co-cited location
pairs (L2, L4) and (L3, L4) that are respectively con-
nected by their corresponding links lL2L4, lL4L2, and
lL3L4, lL4L3. In Figure 4, each directed dot line denotes
an implicit link from one location to another. Finally, a
co-citation graph is constructed with the implicit links
between each co-cited pair of fault location.

B. Applying PageRank to Implicit Links

After obtaining the co-citation graph with implicit link
structure, we apply a PageRank-based algorithm that has
been successfully implemented in Google search engine
[29] to rank the potential location of faults. An n × n
adjacency matrix is denoted by M with the rows and
columns corresponding to the directed graph G of the
potential location of faults. If there is a link from location
j to location i, then the matrix entry M [i, j] has a weight
1/Nj , where Nj denotes the number of links that location
j points to. The weights of all other entries are filled with
zeros.

The adjacency matrix is used to compute the rank score
of each location. The rank score PR(i) of location i is
recursively evaluated by a function on the rank scores of
the locations that point to location i:

PR(i) =
∑

j→i

[PR(j)/N(j)] (1)

In Equation (1), the recursive PR equation gives each
location a fraction of the rank of each location pointing
to it. Inversely, that location is weighted by recursively
giving the strength of the links from other locations in
the matrix.

Figure 5 gives an example of a small matrix M and the
recursive computation for its PageRank scores. According
to the co-citation graph obtained in Figure 4, each entry
Mij is given a weight of either zero or 1/Nj . For instance,
L5 has two outgoing edges to L1 and L2 (NL5 = 2),
lL1L5 and lL2L5 are 1/2, and lL3L5, lL4L5, and lL5L5

are 0. Since L5 is pointed by L1 and L2, PR(L5)
is determined by PR(L1) and PR(L2). L1 and L2
respectively have two and three outgoing links, and thus
PR(L5) is the sum of PR(L1)/2 and PR(L2)/3. Let
PRk be the kth intermediate PageRank state, and PRk+1

denote the next state. When the recursive computation of
PRk+1 = M × PRk converges to a set of fixed values,
the converged PRk+1 obtains the PageRank scores of the
fault-prone locations.

However, among all potential locations of faults, there
may exist some locations that have never been reported
as bug locations before or some bug locations that have
never been co-cited with other locations. After the trans-
formation into a co-citation graph, such kinds of locations
do not have any outgoing link to other locations and
thus become dangling locations. In practice, if many
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Fig. 5. The PageRank scores from the above co-citation graph

locations have no outgoing link, the eigenvector of the
above equation is mostly zero.

Besides, if two bug locations are co-cited with only
one bug report, then there exist only two directional links
pointing to each other. The two co-cited bug locations thus
fall into a loop. During the process of matrix computation,
the loop accumulates PageRank scores but does not
distribute any PageRank scores to other locations due to
the lack of outgoing links. The loop forms a trap, which
is called a RankSink [11]. Consequently, locations in the
loop are likely to obtain higher PageRank scores than they
should have.

Therefore, the basic model is modified using the con-
cept of random walking with a damping factor to miti-
gate the problems of dangling locations and RankSinks
[4], [11]. Equation (2) shows the modified form of the
PageRank equation with a damping factor d.

PR(i) = (1 − d) + d
∑

j→i

[PR(j)/N(j)] (2)

In Equation (2), the parameter d is the damping factor,
which is set between zero and one. The parameter d is to
predict the probability of randomly choosing one of the
links on the current location and jumping to the location
it links to. With the probability of 1 − d, the PageRank
readjusts the equation to model the case of randomly
jumping to a location picked uniformly from the potential
location of faults.

C. Predicting and Tracking Bugs with PageRank

After constructing the co-citation graph of bug loca-
tions using PageRank, information retrieval (IR) and nat-
ural language processing (NLP) techniques are employed
to handle the processing of bug reports and the prediction
of bug locations. When a new bug report comes, the
proposed implicit social network model using the PageR-
ank algorithm is applied to predict the possible location
of faults by retrieving the fault-prone locations cited by
similar bug reports. The detail of similarity calculation
between bug reports will be defined in Section V.C.
Figure 6 illustrates the process of predicting bug locations
with the proposed implicit social network model.

Figure 6 shows that bug reports and their corresponding
fixed locations are respectively collected from bug report
managing systems (BRMS) and CVS/SVN to construct
the co-citation graph of bug locations with PageRank.
Based on the assumption that the explicit links between
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Fig. 6. Overview of the bug prediction and tracking process.

TABLE I

THE STATISTICS OF THE EXPERIMENTAL DATA.

Project Name Subversion (SVN) ArgoUML
– Language C Java
– Software Type SCM Tool UML Tool
– SCM Subversion Subversion
– BRMS Tigris Tigris
– Data Period 07/01-03/05 02/00-04/07
– # of Fixed BR 211 1,024
– # of Files 148 1,405
– # of Bugs 516 4,494

historical bug reports and the corresponding fixed lo-
cations can reveal the knowledge of debugging, these
links are further used to predict and track the poten-
tial bug locations of a new coming bug report. Since
the contents of bug reports are composed of structured
meta-information and textual descriptions, the debugging
knowledge embedded in the historical bug reports can
be further extracted with IR and NLP techniques. After
transforming bug reports into knowledge representation
with a vector space model (VSM), the likely bug lo-
cations denoted by a new coming bug report can be
predicted by comparing it to historical bug reports with
cosine similarity measure [2]. The predicted locations are
tracked through the explicit links from similar bug reports
pointing to the corresponding location of faults, which
are ranked by the PageRank scores. Likewise, when the
new bug report and its corresponding locations are fixed,
the co-citation relationships will be added to the implicit
social network graph for future predictions.

V. DATA COLLECTION AND PROCESSING

To validate the performance of the proposed implicit
social network model, experiments were conducted on
two open-source projects collected from bug report man-
aging systems (BRMS). The statistics of data sets and
their processing are described in the following subsec-
tions.

A. Data Sets

Table I summarizes the statistics of the collected
datasets. Bug reports of two open-source projects, Sub-

version (SVN) and ArgoUML, were collected from Tigirs
for evaluation [30]. SVN and ArgoUML are respectively
developed in C and Java. These two projects are selected
in the experiments because their version archives are well
integrated with their bug databases.

B. Identifying the Fixed Locations

To identify the fixed components from failed ones in
the source files, the fixed information will be retrieved
from version archives and BRMS. In this study, the links
between bug reports and their corresponding fixed bugs
are discovered in the following two ways that have been
used in previous studies [6], [7], [24], [26].

1) Using keywords in change logs: The fixes in version
archives are identified by the messages that describe
changes. The proposed approach first refers to the pre-
vious method to explore references to bug reports such
as ”Fixed issue # 1234”. However, the trust level of only
employing this approach is low [26].

2) Using keywords in bug reports: More key words in
bug reports such as “fixed”, “defect”, “bug” or matches
patterns like “# and a number” are used to extract the
links. Although each bug number potentially has a cor-
responding reference to a bug report, such references are
not sufficient to extract the fixed information. In advance,
text similarity between bug reports and change logs are
applied to discover more embedded links.

C. Extraction of Bug Information with IR/NLP

Since the nature of bug reports is composed of struc-
tured natural language, informational retrieval (IR) and
natural language processing (NLP) techniques are applied
to support retrieving and tracking the location of faults.
We thus employed IR and NLP techniques to extract bug
information embedded in both bug reports and source
archives. To employ IR and NLP techniques to extract
information about debugging, bug reports need to be pre-
processed as bag-of-words by standard IR steps, namely,
tokenization, stemming, stopword removal, vector space
representation, and similarity calculation [2], [14].

First, each bug report is tokenized by space and thus the
sentences and passages in each report can be transformed
into term space. Stemming is to reduce the inflected words
into their stem, base or root form, e.g. plural nouns into
singular nouns, and the past, progressive, and perfect tense
into the simple tense. Stopword removal aims to remove
the common words that do not carry specific information
such as “the”, “a”, “this”, and “that”. The preprocessed
terms are represented in a vector space by assigning
different weights, and then IR techniques such as cosine
measure can be further employed to retrieve similar bug
reports and track the location of faults.

VI. EXPERIMENTAL SETUP

According to the problem definition, the possibility of
location (L) is predicted to file level by comparing and
ranking the similarity of a new coming bug report (B) to
the fixed bug reports and their locations. To evaluate the
fixed locations, bug reports resolved as “FIXED” were



used for experiments. The contents of bug reports are
further transformed into vector space representation with
TF · IDF weighting [20], [21] after the standard IR
processing steps to properly present the data semantics.

In the experiment, bug reports were chronologically
divided into 10 folds, in which the first 9-fold data were
used as historical bug reports to build up the co-citation
graph, and the last 1-fold data were treated as new coming
bug reports for test. The experimental setup ensures that
the historical data are used to predict future bug locations
reported by new coming bug reports. Besides, such setup
closely simulates the cases in the real world.

The proposed implicit social network model using
PageRank is assessed in comparison with an SVM model
to validate its performance [18]. To simulate the like-
lihood of jumping to an arbitrary location, the random
probability in PageRank is generally set around 0.15
with a damping factor of 0.85 [4]. Both models are
implemented in the same experimental environment to
provide users with a recommendation list of 1-100 po-
tential locations for each coming bug report. This study
makes an assessment of prediction accuracy that has been
used in other studies [12], [18] and regards the correct
predictions as hit. Therefore, accuracy is to measure the
percentage of correct hits by the following equation:

Prediction accuracy =
# of hit

# of hit + # of miss

VII. RESULTS AND DISCUSSION

In this section, the prediction accuracy for both models
was assessed. Experimental results and the threats to
validity are discussed as follows.

A. Evaluation

Figure 7 depicts the prediction accuracy of the social
network model and the SVM model for SVN. The results
show that the social network model using PageRank can
correctly predict the potential location of faults up to
100% in a recommendation list of 100 files. However,
the SVM model only achieves the prediction accuracy of
81.8% in the same number of predictions.

Similar to the behavior of browsing search results on
the Web, over 80% users usually only look at the first page
of 10 retrieved items [23]. Therefore, a recommendation
list of 10 files was further investigated for its prediction
power. In top 10 predictions, the proposed model with
PageRank can achieve the accuracy of 40.9%, but the
SVM model only achieves the prediction accuracy of
about 31.8%.

Figure 8 shows the accuracy results of both prediction
models for a larger open-source project, ArgoUML. The
SVM-based approach consistently achieves slightly better
prediction accuracy of about 5% to 6% than the social
network approach in a recommendation list of 10 to
100 files. In the second experiment, we have explored
the reason that degrades the performance of the social
network approach. One reason is that the ArgoUML
project does not provide abundant co-citation information
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Fig. 7. The prediction accuracy for SVN.

because currently less than 60% faults could be collected
to build its social network graph. Many implicit links
embedded in the rest of the uncollected bug reports have
not been explored to rank the significant fault-proneness.
Another reason is that the weight d = 0.85 used in the
current experiment cannot reflect the co-citation behavior
in ArgoUML and still need to be fine-tuned. These
observations will help to suggest whether the learning-
based approach or the social network approach be used
for the tradeoff between high accuracy.
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Fig. 8. The prediction accuracy for ArgoUML.

B. Discussion

Although the implicit social network model can cor-
rectly predict the potential location of faults in SVN, there
still exists much room to further improve the prediction
power to larger projects and different types of projects.
Currently, the prediction models are only validated in
two open-source projects. Hence, there may exist some
threats to validity. For example, the systems examined in
the experiment might not be representative enough since
many closed-source projects may result in different types
of bug localities. Besides, the partially collected faults
in these two projects may also be threats to affect the
prediction performance.

However, we believe that the prediction accuracy can be
further improved with bug information of better quality.
Especially for a recommendation list of 10 locations, the
quality of the collected bug reports significantly affects
its accuracy. Since an accurate recommendation list of 10



locations will be of most help for software developers
and analysts to rapidly and correctly locate the bugs, it
is the highest prioritized goal for further improvements.
Moreover, data semantics about bug reports need to be
explored and extracted with advanced IR/NLP techniques
to retrieve more semantically relevant bug locations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an implicit social network
model to predict and rank bug locations in the co-cited
bug graph. The performance of correctly predicting bug
locations has been validated. For a smaller project, the
implicit social network model with PageRank is highly
promising to correctly hit the potential bug locations. For
a larger project, the proposed model has achieved compa-
rable prediction accuracy for incremental bug prediction.
This model can primitively facilitate software engineers
in the task of locating bugs and support project managers
to allocate limited resources for quality assurance.

This paper has revealed that the co-citation relationship
is an important clue among various hints to predict the
potential location of faults. An implicit social network
model using a PageRank-based algorithm and IR/NLP
techniques has been investigated to be one promising
way to explore the significant bug locations. Nevertheless,
much work still needs further investigations.

• To discover similar bug locations of more semantic
relevance, advanced IR techniques such as building
domain-specific ontologies and semantic similarity
measures need to be further studied.

• Advanced filtering and weighting approaches need
to be studied to filter out the unimportant co-citation
links and further enhance valuable bug links.

• Various types of software projects and larger systems
need to be validated in the future to support the
prediction model.

Future work involves the investigations on not only
naive link analysis, but profound social network relation-
ships and advanced IR/NLP techniques. More larger case
studies also need to be studied for validation.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix this Bug?,”
Proc. of the 28th Int’l Conf. on Software Eng. (ICSE 2006), pp.
361–370, 2006.

[2] R. A., Baeza-Yates, and B. A., Ribeiro-Neto, Modern Information
Retrieval, Addison Wesley, 1999.

[3] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Predicting the
Location and Number of Faults in Large Software Systems,” IEEE
Trans. on Software Eng., vol. 31, no. 4, pp. 340–355, 2005.

[4] S. Brin and L. Page, “The Anatomy of Large-Scale Hypertextual
Web Search Engine,” Computer Networks and ISDN Systems, vol.
30, no. 1-7, pp. 107–117, 1998.

[5] S. Chakrabarti, M. Joshi, and V. Tawde, “Enhanced Topic Distilla-
tion using Text, Markup Tags, and Hyperlinks,” Proc. of the 24th
ACM SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR 2001), pp. 208–216, 2001.

[6] D. Cubranic and G. C. Murphy, “Hipikat: Recommending Perti-
nent Software Development Artifacts,” Proc. of the 25th Int’l Conf.
on Software Eng. (ICSE 2003), pp. 408–418, 2003.

[7] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release History
Database from Version Control and Bug Tracking Systems,” Proc.
of Int’l Conf. on Software Maintenance (ICSM 2003), pp. 23, 2003.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
Fault Incidence Using Software Change History,” IEEE Trans. on
Software Eng., vol. 26, no. 7, pp. 653–661, 2000.

[9] A. E. Hassan and R. C. Holt, “The Top Ten List: Dynamic Fault
Prediction,” Proc. of Int’l Conf. on Software Maintenance (ICSM
2005), pp. 263–272, 2005.

[10] M. R. Henzinger, “Hyperlink Analysis for the Web,” IEEE Internet
Computing, vol. 5, no.1 , pp. 45–50, 2001.

[11] S. J. Kim and S. H. Lee, “An Improved Computation of the
PageRank Algorithm,” Lecture Notes in Computer Science, vol.
2291, pp. 73–85, 2002.

[12] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller,
“Predicting Faults from Cached History,” Proc. of the 29th Int’l
Conf. on Software Eng. (ICSE 2007), pp. 489–498, 2007.

[13] J. M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[14] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. “Have
Things Changed Now? an Empirical Study of Bug Characteristics
in Modern Open Source Software. Proc. of the 1st Workshop
on Architectural and System Support for Improving Software
Dependability (ASID 2006), pp. 25–33, 2006.

[15] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density,” Proc. of the 27th Int’l Conf.
on Software Eng. (ICSE 2005),

[16] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
Vulnerable Software Components,” Proc. of the 14th ACM Conf.
on Comp. and Communications Security (CCS 2007), pp. 529–540,
2007.

[17] T. J. Ostrand, E. J.Weyuker, and R. M. Bell. “Where the Bugs
Are,” Proc. of the 2004 ACM SIGSOFT Int’l Symp. on Software
testing and analysis (ISSTA 2004), pp. 86–96, 2004.

[18] R. Premraj, I.-X., Chen, H. Jaygarl, T. Nguyen, T. Zimmermann,
and S. Kim, and A. Zeller, “Where Should I Fix This Bug?,”
Saarland University, Saarbrücken, Germany, Feb., 2008.

[19] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
Duplicate Defect Reports Using Natural Language Processing,”
Proc. of the 29th Int’l Conf. on Software Eng. (ICSE 2007), pp.
499–510, 2007.

[20] G. Salton, and M.J. McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, 1983.

[21] G. Salton, and M.J. McGill, Automatic Text Processing: The Trans-
formation Analysis and Retrieval of Information by Computer,
Addison Wesley, 1989.

[22] M. Serrano, and I. Ciordia, “Bugzilla, ITracker, and Other Bug
Trackers,” IEEE Software, vol. 22, no. 2, pp. 11–13, 2005.

[23] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis
of a Very Large AltaVista Query Log,” ACM SIGIR Forum, vol.
33, no. 1, pp. 6–12, 1999.
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