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Abstract- Test vector ordering is recognized as a simple and 
non-intrusive approach to assist test power reduction. Simulation 
based test vector ordering approach to minimize circuit 
transitions requires exhaustive simulation of each test vector pair. 
However, long simulation time makes this approach impractical 
for circuits with large test set. In this paper we present a 
calculation based approach to faster order test vectors to reduce 
test power for full scan sequential circuits. Most calculation 
approaches are for combinational circuits or for sequential 
circuits but only considering the portion of circuit derived from 
the primary inputs. The proposed approach exploits the 
dependencies between internal circuits and transitions at both the 
primary and state inputs. Experiments performed on the ISCAS 
89 benchmark circuits show that the improvement efficiency of 
the proposed approach can achieve 91.55% and has better 
performance than the existing calculation based approaches. 

I. INTRODUCTION 
Low power electronics has become increasingly important 

with the advent of portable electronic devices. This has 
motivated designers to reduce power consumption in the circuit, 
during both normal operation and testing. Power consumption 
of digital systems is considerably higher in test mode than in 
normal mode. During system normal operation, low power 
consumption can be attributed to the significant correlation that 
exists between successive vectors applied to a given circuit, 
whereas in test mode this is not necessarily true. Elevated test 
power may cause logical error in a fault-free chip leading to an 
unnecessary loss of yield. Hence it is important to reduce 
power consumption during test application. Various techniques 
have been proposed to reduce power consumption during test 
application [1-7]. Because power consumption in CMOS 
circuits is proportional to the switching activity in the circuit, 
the majority of these techniques concentrate on reducing the 
power consumption by minimizing the switching activity. The 
technique for power minimization with no penalty in test area 
and performance is based on test vector ordering which 
modifies the order in which test vectors of a given test 
sequence are applied to the CUT [1-5]. The authors in [1] 
construct a complete weighted graph, called transition graph, in 
which each vertex represents a test vector and a weight 
assigned to each edge represents the number of transitions 
activated in the circuit due to the application of the test vector 
pair connecting to the edge. Logic and timing simulations are 
required to compute the weight assigned to each edge. There 
are totally n(n–1)/2 simulations required for the construction of 

the graph, where n is the number of test vectors. The general 
delay model is assumed during simulations. A greedy 
algorithm is then used to find a Hamiltonian path of minimum 
cost in the transition graph. The main problem in this approach 
rests in the time needed to construct the transition graph for 
circuits with a large number of test vectors. In order to reduce 
the graph construction time, the paper in [2] uses zero-delay 
model for logic and timing simulations. Although the 
simulation time is reduced, the number of simulations remains 
n(n–1)/2 and the time required to construct the transition graph 
is still high. The paper in [3] propose a fast simulation method 
which only take into account the expected switching activity at 
the primary inputs and at a very small set of internal lines of 
the CUT. The computational time for the construction of 
transition graph is reduced but the power reduction obtained in 
[3] is lower than that in [1] and [2]. To make it possible to 
apply test vector reordering to circuits with large number of 
test vectors, the authors in [4] employ the Hamming distance 
between test vectors rather than simulate transitions in the 
circuit to evaluate the power consumption. Although the 
Hamming distance approach is the most time-saving, it doesn’t 
take into account the topology of the circuit. The reduction in 
power consumption for the Hamming distance approach is 
usually significantly lower than that for the simulation based 
approaches [1-3]. The authors in [5] consider the structure of 
the CUT in the estimation of the weights in the transition graph 
thus providing better solutions in terms of amount of power 
saved. An induced activity function is proposed in this paper to 
measure the impact of a transition at a specified input on the 
switching activity of the CUT and is used as the weight of the 
Hamming distance. However, these calculation based 
approaches in [2-5] are only applicable to combinational 
circuits or full scan sequential circuits with specific scan cell 
design. In this paper we present a calculation based test vector 
ordering technique that reduces power consumption during test 
application for full scan sequential circuits. We exploit the 
dependencies between internal circuits and the transitions at 
scan cells as well as primary inputs. The idea behind the 
proposed approach is based on the following two observations. 
First, for a scan cell, the number of transitions caused by a test 
vector being scanned in/out depends not only on the transitions 
in the test vector/response but also on its position in the scan 
chain. Second, the impact of each circuit input on the switching 
activity in the internal circuit is different. If a transition at a 
circuit input of the CUT propagates to the internal circuit, it  
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Fig. 1 A full scan sequential circuit. 

will result in a large number of unnecessary transitions. 
Depending on the circuit structure, the transitions at some 
circuit inputs may cause more transitions at internal circuit than 
those at other circuit inputs. Based on the two observations, 
weights on the transition graph for test vector ordering can be 
derived. In the following, two functions to compute the 
transition count of a scan cell in the scan chain and to measure 
the impact of a circuit input on switching activity in the 
internal circuit are developed, respectively. The rest of the 
paper is organized as follows. Section 2 provides the 
background on scan testing and some circuit definitions. In 
Section 3, an impact function is developed to measure the 
impact of transitions at a gate on the switching activity in the 
combinational part of the circuit. Section 4 calculates the 
transition count at each scan cell as a pair of test vectors is 
scanned. Section 5 presents the proposed approach. To validate 
the proposed approach, experimental results are given in 
Section 6. Section 7 concludes the paper. 

II. CIRCUIT DEFINITIONS 
Consider the full scan sequential circuit shown in Fig.1, 

comprised of a block of combinational circuit C and a set of m 
state elements. The primary inputs and outputs of the 
circuit are x1, x2,…, xn, and z1, z2,…, zk, respectively. The 
present state variables, y1, y2,…, ym, constitute the state inputs 
of the combinational circuit. The next state variables, Y1, Y2,…, 
Ym, constitute the state outputs of the combinational circuit. 
The forward cone of line l, FC(l), is defined as the portion of a 
circuit whose signals are reachable by a forward trace of the 
circuit topology starting at l. The primary forward cone (PFC) 
is defined as the portion of the circuit which is the union of 
forward cones of all primary inputs. The change of values on 
primary inputs by applying consecutive test vectors causes 
switching activity in the primary forward cone. The state 
forward cone (SFC) is defined as the portion of a circuit which 
is the union of forward cones of all state inputs. The change of 
values on state inputs by shifting a scan vector causes 
switching activity in the state forward cone. The portion of the 
circuit defined as the intersection of primary forward cone and 
state forward cone is referred to as blocking cone (BC). Any 
gate in the blocking cone has at least one input in the path 
which starts from a primary input and one input in the path 
which starts from a state input. Most calculation based test 

vector ordering approaches to reducing test power is by 
lowering the transition density at the primary inputs. Very little 
work considers reducing the transition density at the state 
inputs; therefore, only the switching activity in the PFC of the 
CUT can be reduced by these approaches. In this paper, we try 
to lower the transition density at both the primary inputs and 
state inputs by ordering the test vectors such that the switching 
activity in the PFC and SFC of the CUT can be reduced. 

III. CALCULATION OF IMPACT FUNCTION 
During scan cycle, filling in the scan chain with the state 

input part of a test vector requires shifting the bits one by one 
into each scan cell, thus creating increased switching activity in 
the scan cells. The rippling effect originating from a scan chain 
to the CUT results in a large number of unnecessary transitions 
at the circuit lines. Additionally, if a transition at a primary 
input of the CUT propagates to the internal circuit, it will 
subsequently cause transitions. Depending on the circuit 
structure, the transitions at some circuit inputs (primary /state 
inputs) of a CUT cause more transitions at internal lines than 
those at other circuit inputs. Therefore, reducing transitions at 
those circuit inputs that cause more transitions in the internal 
circuit will make greater reduction in switching activity. To 
measure the transition effect at a circuit input reflecting into 
the CUT, it is necessary to develop an approach to evaluate the 
impact on the transitive fanout of each circuit input. The 
authors in [7] propose a gain function for computing the 
weighted transition density, which provides an effective 
measure of the switching activity in logic circuit, for each 
primary input. In this section, we develop an impact function, 
which is modified from the gain function, to measure the 
transition of a state/primary input impact on the switching 
activity in the internal circuit. 

Consider a CUT with m circuit inputs x1, x2, …, xm. The 
signal probability sp(c) of a circuit line c is defined as the 
probability that c is set to 1: 

sp(c) = Pr(c = 1)     (1) 
Signal probability can be propagated through logic gates based 
on simple rules of probability and logic function of the gates. 
The transition probability of a circuit line c is the probability 
of the signal making a transition from one state to another at 
any time t and is denoted by pt(c). Under the assumption that 



the values applied to each circuit input are temporally 
independent, we can write: 

pt(c) = 2 · sp(c) · (1 - sp(c))   (2) 
Let nc(T) be the number of transitions at a circuit line c in a 
time interval of length T. The transition density at c, i.e. the 
number of transitions per second at c, is defined as: 
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Let fi be a function that depends on circuit input xi. The 
Boolean difference of fi with respect to xi is defined as follows: 
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where ⊕ denotes the exclusive-or operation. The Boolean 
difference signifies the condition under which output fi is 
sensitized to circuit input xi. If the circuit inputs xi, i = 1, …, m, 
to the CUT are not spatially correlated, the transition density of 
a circuit line c can be defined in terms of the Boolean 
difference with respect to each circuit input, ii xf ∂∂ / , and the 
transition density of each circuit input, D(xi), as: 
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The Boolean difference ii xf ∂∂ /  represents the condition for 
sensitizing circuit input xi to output fi as noted in Eq. (4). 
Therefore, P( ii xf ∂∂ / ) signifies the probability of sensitizing 
input xi to output fi, while P( ii xf ∂∂ / )D(xi) is the contribution 
of transitions at output fi due to circuit input xi only. Hence, the 
contribution of transitions at output fi due to all the circuit 
inputs is obtained by taking the summation over all the circuit 
inputs of the CUT. 

As shown in Eq. (5), the transition density of a circuit line c 
is the sum of the transitions at each circuit input that sensitize 
to line c. Hence, the portion of the transition density of line c 
due to the transition at a circuit input xi, is given by 
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Similarly, the portion of the transition density of line c due to 
the transition at a specific line k, can be written by 
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where gi is a function that depends on circuit line k. The sum of 
transition densities of lines in the forward cone of k, FC(k), that 
can be attributed to the transitions at k is given by: 

( )∑
∈∀

=
)(kFCc
kk cDD    (8) 

For the CMOS circuit technology, dynamic power due to the 
charging and discharging circuit capacitances is the dominant 
source of power consumption. Hence, the power dissipation in 
a circuit depends on the load capacitance of internal lines. 
However, lines connected to more gates are lines with higher 
parasitic capacitance. If two circuit lines have the same 
transition density, the one with higher fanout will consume 
more power than the other one with lower fanout. Load 
capacitance also depends on the type and the size of the device. 

For example, a 2-input NOR has more load capacitance than a 
2-input NAND, and the load capacitance difference increases 
as the number of inputs increase. So, two factors, the fanout 
and device coefficient, are also considered in the impact 
function as the weights of the transition density. Although wire 
length also affects power consumption, for simplicity, it is not 
considered in the impact function. For each circuit line k the 
impact function IMPk can be expressed as: 
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where Fc and αc are the fanout and device coefficient of circuit 
line c, respectively. The fanout of the lines is defined by circuit 
topology. The device coefficient can be obtained once the 
circuit has been synthesized. In this derivation, the Boolean 
difference of fi with respect to c is derived from the signal 
probability. However the signal probability P( ii spf ∂∂ / ) can 
easily be calculated using the similar procedure which is used 
to calculate detection probability [3]. 

To illustrate the calculation of impact function value, 
considers the circuit shown in Fig. 2. The primary inputs are 
{x1, x2, x3, x4}, {S1, S2, S3, S4} are scan cells, {y1, y2, y3, y4} are 
the state inputs, and {z1, z2} are the primary outputs. The 
forward cone of primary input x3 is composed of circuit lines c1, 
c2, c5, c7, c8 and c10. Table 1 shows the impact function value 
for primary input x3 in Fig. 2. The first row shows the circuit 
lines in the forward cone of x3. The second and third rows 
show the corresponding fanout and transition density of each 
circuit line in each column, respectively. The circuit lines and 
their fanouts included in the forward cone of x3 can be obtained 
directly from the circuit structure. However the transition 
density for each circuit line can be calculated using Eqs. (4) 
and (6). Take circuit line c5 for example. As shown in Fig. 2, 
the Boolean function fc5 for circuit line c5 can be express as 

2232 )( xyxx + . By the definition in Eq. (4) the Boolean 
difference of fc5 with respect to x3 can be expressed as 
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Assume that the signal probability for each bit in a test vector 
is 1/2. By Eq. (2) the transition probability for x3 is equal to 2 × 
1/2 × (1 - 1/2) = 1/2. According to Eq. (6), the transition 
density for c5 is equal to 1/4 × 1/2 = 1/8. Assuming that the 
device coefficient is 1 for all type of gates, the impact function 
value of x3 can be calculated by Eq. (9) and is equal to 1 × 1/2 
+ 2 × 1/4 + 1 × 1/8 + 1 × 1/16 + 2 × 1/16 + 1 × 3/32 = 45/32 = 
1.4. 

Table 1 Calculation of impact function value for primary input x3. 

FC(x3) c1 c2 c5 c7 c8 c10 IMP
Fanout 1 2 1 1 2 1 

TD 1/4 1/4 1/8 1/16 1/16 3/32 1.4
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Fig. 2 An example circuit. 

IV. SCAN CELL TRANSITION COUNT CALCULATION 
The paper in [6] has developed an expression, called 

weighted transition count (WTC), to compute in the scan chain 
the number of transitions caused by a test vector being scanned 
in. The expression is based on the observation that the number 
of scan cell transitions caused by a transition in a test vector 
being scanned in depends on its position in the test vector. The 
number of weighted transitions is given by: 

Weighted_Transitions = ∑ (Size_of_Scan_Chain –  
Position_of_Transition)    (10) 

It is shown that the weighted transition count is very well 
correlated with the real power dissipation and hence the power 
dissipated when applying two vectors can be compared by 
counting the number of weighted transitions in the vector. 
However, the WTC with respect to a test vector can also be 
computed by counting the transitions at each scan cell. For 
example, consider a scan chain with five scan cells (d1, d2, d3, 
d4, d5) and the test vector b5b4b3b2b1 = 00101 being scanned in. 
The test vector has 3 transitions, T1 between b1 and b2, T2 
between b2 and b3, and T3 between b3 and b4. By Eq. (1), WTC 
can be computed by summing up the weight of each transition 
in the test vector; that is, WTC = (5-1) + (5-2) + (5-3) = 9. The 
same result can also be obtained by summing up the number of 
transitions at each scan cell in the scan chain. In the following, 
we compute the number of transitions at each scan cell. Note 
that not all the bits in a test vector will pass through every scan 
cell. For instance, only subsequences b2b1 and b4b3b2b1 will 
pass through the scan cells d4 and d2, respectively. To put it 
more formally, given a scan chain with m scan cells, the 
subsequence of a test vector to pass through the scan cell di can 
be expressed as bm-i+1bm-i…b1 where 1 ≤ i ≤ m. Therefore, the 
number of transitions at a scan cell can thus be calculated by 
counting the number of transitions in the subsequence that 
passes through it. Continuing above example, for the first scan 
cell d1 there are 3 transitions in b5b4b3b2b1; hence the transition 
count for scan cell d1 is 3. Similarly, there are 3, 2, 1, and 0 
transitions in the subsequences b4b3b2b1, b3b2b1, b2b1, and b1, 
respectively. Hence the transition counts for scan cells d2, d3, 
d4, and d5 are 3, 2, 1, and 0, respectively. The WTC can thus be 
calculated by summing up the transition count of each scan cell 

in the scan chain, i.e. 3 + 3 + 2 + 1 + 0 = 9. This value is the 
same as the value obtained by Eq. (1). What we have explained 
above reveals that the number of transition count at a scan cell 
depends not only on the number of transitions in the test vector 
but also on its position in the scan chain. The number of 
transition count caused by scanning in test vector Vt at the scan 
cell di is given by: 
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where m is the length of the scan chain and Vt(j) represents the 
jth bit of the test vector Vt. Similar reasoning can be applied to 
scan out test responses. The number of transition count caused 
by scanning out test response Vr at the scan cell di is given by: 
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The WTC value corresponding to Vk scan-in or scan-out can be 
obtained by summing up transition counts of each scan cell in 
the scan chain and is given by:  
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V.  PROPOSED APPROACH 
Test vector ordering is equivalent to a permutation of a 

given set of test vectors. All the test vector ordering techniques 
in [1-5] are based on the construction of a transition graph with 
a weight associated with each edge. The weight represents the 
power consumed after consecutive test vectors are applied. The 
problem is then amounted to finding a Hamiltonian path of 
minimum cost in the transition graph. The main difference 
between these approaches is the representation of the weight. 
In the following we present a method to calculate the weight 
for each pair of test vectors. Since the power consumed during 
scan testing can be divided into two major parts: power during 
shift cycle and power during application cycle, the calculation 
of the weight can also be divided in two parts: weight for state 
input part and weight for primary input part. First, we consider 
the calculation of weight for the state input part. Suppose that 
each test vector for the CUT has n + m bits where the first n 



bits form the primary input part and the last m bits form the 
state input part. When applying a test vector pair (Vk-1, Vk) to 
the CUT, the state output of Vk-1 is scanned-out simultaneously 
with the scanning-in of the state input of test vector Vk. And the 
transition count of a scan cell di , TC(di), in the scan chain after 
applying the test vector pair (Vk-1, Vk) can be expressed as: 
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where Rk-1(j) represents the jth bit of the state output after 
applying test vector Vk-1 and Vk(j) represents the jth bit of the 
state input of test vector Vk. As described previously, an impact 
function is used to measure the impact of a circuit input on the 
switching activity in the internal circuit. The circuit input with 
higher impact function value has higher probability to cause 
more transitions in the CUT. Hence, the weight which takes 
into account dependencies between internal nodes and the 
transitions on the state input spi can thus be defined as TC(di) × 
Ispi. Therefore, the weight for the state input part on each edge 
(Vk-1, Vk) representing the cost in terms of transition density of 
the application of the test vector pair (Vk-1, Vk) to the state 
forward cone can be defined as: 
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where Ispi is the impact function value of state input spi and 
TC(di) is the transition count of scan cell di after applying the 
test vector pair (Vk-1, Vk). 
Secondly, we consider the calculation of weight for the 

primary input part. If a transition at a primary input of the CUT 
propagates to the internal circuit, it will subsequently cause 
more transitions. When applying the state input parts of two 
consecutive test vectors, say (Vk-1, Vk), to the CUT, the 
transition occurred at a primary input pi, TC(pi), can be 
represented as: 

( ) ( ))()(1 iViVpTC kki ⊕= −    (16) 
Hence, the weight which takes into account dependencies 
between internal nodes and the transitions on the primary input 
pi can thus be defined as TC(pi) × Ipi. The weight for the 
primary input part on each edge (Vk-1, Vk) representing the cost 
in terms of transition density of the application of the test 
vector pair (Vk-1, Vk) to the primary forward cone can be 
defined as: 

( ) ∑
=

− ×=
n

i
iikk IsppTCVVpipWeight

1
1 )(,_   (17) 

The total weight on edge (Vk-1, Vk) can be formally defined as: 
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Similar to the other test vector ordering approaches in [1-5], 

construction of a transition graph is required in this paper. 
Consider a set of test vectors S = (V1, V2, …,Vn). We construct 
a complete directed graph G = (φ, E), where each vertex Vk ∈ φ 
represents a test vector of S and each directed edge (Vi, Vj) ∈ E 
represents a pair of test vectors. The weight on each edge (Vi, 

Vj) of G is calculated using Eq. (18). Then the test vector 
ordering problem is amounted to finding a Hamiltonian path of 
minimum cost in the complete graph, which is known to be an 
NP-hard problem. A rich literature exists on the algorithms for 
solving this problem. We develop a program based on the 
algorithm in [8] to determine the order of the test vectors that 
minimizes the power consumed during test. 

VI.  EXPERIMENTAL RESULTS 
To validate the proposed approaches, we have carried out 

experiments on full scan versions of the ISCAS 89 benchmark 
circuits. Table 2 shows basic characteristics of these circuits. 
They are gate counts, number of Flip-Flops, primary inputs and 
primary outputs, respectively. The procedure to determine the 
order of the test vectors was implemented on a 1.5 GHz 
Pentium IV PC with 512 MB RAM running Linux and using 
GNU CC version 2.19. We use average transition count (ATC) 
as quantitative measure for power consumption. The ATC is 
defined as the total number of transition counts divided by the 
total number of clock cycles. To evaluate the effectiveness of 
the proposed vector ordering approach, we compare the ATC 
and the improvement of transition reduction with that of the 
simulation based approach. Simulation based approach is 
founded on exhaustive counting of the transitions at all circuit 
lines for every test pair. The calculation based test vector 
ordering approach in paper [5] are also implemented and are 
compared with the proposed approach. The first column gives 
the circuit name. In the second column, the first sub-column 
Original shows the ATC for the circuits without using any 
vector ordering techniques. The second, third, and fourth 
sub-columns (Our, Paper[5], and Simu.) show the ATC by 
using the proposed approach, the approach in paper [5], and the 
simulation based approach, respectively. The next column 
shows the improved percentages of ATC for the proposed 

Table 2 Characteristics of ISCAS 89 benchmark circuits 

Circuit Gates FF's PI's PO's 
s298 119 14 3 6 
s344 160 15 9 11 
s420 218 16 19 2 
s510 211 6 19 7 
s641 379 19 35 24 
s713 393 19 35 23 

s1423 657 74 17 5 
s5378 2779 179 35 49 
s9234 5597 211 36 39 

s13207 7951 638 62 152 
s15850 9772 534 77 150 
s35932 16065 1728 35 320 
s38417 22179 1426 38 304 



Table 3. Results of power reduction 

Average Transition Count Improvement (%) Efficiency (%) 

Circuit Original 
(A) 

Ours 
(B) 

Paper[5] 
(C) 

Simu. 
(D) 

Ours 
( ) ( )

( )A
BA −

100×  

Paper[5]
( ) ( )

( )A
CA −  

100×  

Simu. 
( ) ( )

( )A
DA −  

100×  
Ours Paper 

[5] 

CPU 
Time 
(Sec.) 

s298 140.61  132.732 130.06 7.37 5.60 7.5 98.27 74.70 0.14 
s344 293.38  273.207 265.10 8.84 6.88 9.64 91.70 71.33 0.31 
s420 307.3  283.681 270.49 9.86 7.69 11.98 82.30 64.16 0.83 
s510 314.42  269.239 258.61 16.6 14.37 17.75 93.52 80.96 0.34 
s641 426.65  383.615 374.39 10.73 10.09 12.25 87.59 82.34 1.17 
s713 409.48 362.27 366.042 358.01 11.53 10.61 12.57 91.73 84.39 1.21 

s1423 1019.25 937.00 953.875 933.84 8.07 6.41 8.38 96.30 76.54 10.75 
s5378 3883.39 3580.49 3656.18 3557.96 7.8 5.85 8.38 93.08 69.82 38.54 
s9234 6758.39 6335.99 6468.31 6315.04 6.25 4.29 6.56 95.27 65.43 76.42 

s13207 12579.98 130.25 12109.3 11805.05 5.59 3.74 6.16 90.75 60.74 109.24
s15850 11079.91 267.45 10681.6 10427.30 5.21 3.59 5.89 88.46 61.03 98.87 
s35932 22784.8 277.00 22142.2 21613.66 4.83 2.82 5.14 93.97 54.87 35.29 
s38417 33023.1 262.23 32308.7 31652.64 3.62 2.16 4.15 87.23 52.13 1473.2

Avg. 7155.44 380.87 6925.28 6766.32 8.18 6.47 8.95 91.55 69.11 142.03
 

approach, the approach in paper [5], and the simulation based 
approach, respectively. Compared with the approach without 
using any vector reordering techniques, only 8.18% of power 
reduction is improved for the proposed approach. This is 
because lots of the circuits in Table 3 are controlled mostly by 
scan chains rather than primary inputs. However, the test 
vector ordering approach is independent to a lot of approaches 
such as circuit modification, scan chain partitioning, and scan 
cell ordering, so it can be utilized together with these 
approaches to further reduce test power. The last column 
compares the proposed approach with the simulated approach 
in terms of improvement efficiency which is defined as the ratio 
between the improved percentages obtained by the proposed 
approach (or the approach in [5]) and by the simulation based 
approach. From Table 3, we find that the percentage 
improvement achieved by the proposed approach is close to the 
simulation based approach and the improvement efficiency can 
achieve 91.55% on average and always has better results than 
the approach in [5] in all cases. In simulation based approach 
the calculation of ATC for every possible pair of test vectors 
requires logic simulation. When the test set is large the 
required computation time is prohibitively long, although it has 
better power reduction rate than that of the calculation based 
approach. 

VII. CONCLUSIONS 
We have presented a calculation based test vector ordering 

approach to reduce power dissipation for full scan sequential 
circuits. The proposed approach exploits the dependencies 

between internal circuits and the transitions at circuit inputs. 
Two functions are developed to compute the transition weight 
of a scan cell and to measure the impact of transitions at a 
circuit input on switching activity in the internal circuit, 
respectively. Experimental results for benchmark circuits show 
that improvement efficiency can achieve 91.55% on average. 
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