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ABSTRACT 
This paper presents a differential-evolution-type 
algorithm for solving constrained continuous 
optimization problems. The proposed differential 
evolution (DE) algorithm is developed based upon 
the penalty function approach, where constraint 
violation is penalized by placing the constraints into 
the objective function. Penalty functions can deal 
both with equality and inequality constraints; in this 
study, equality constraints are transformed into 
inequality ones. In addition, to handle infeasibility 
during DE search, a random re-initialization 
procedure is executed to produce a new potential 
solution inside the allowable ranges. Three different 
types of increasing penalty factors are compared for 
their performance on convergence. The performance 
measure includes the best objective value achieved 
and the number of function evaluations required. 
The recommendation for the selection of parameter 
setting in the new algorithm is given through a series 
of simulation optimizations. The experimental results 
obtained by solving a variety of benchmark functions 
are used to demonstrate the effectiveness and 
efficiency of the penalty-function DE algorithm. 

KEYWORDS 
Constrained optimization problem; Evolutionary 
algorithms; Differential evolution (DE); Meta-
heuristics; Adaptive penalty function. 

1. INTRODUCTION 
Evolutionary algorithms have proved a very 
competitive technique in a wide range of engineering 
applications. Renowned meta-heuristic algorithms 
include simulated annealing (SA), genetic algorithm 
(GA), Tabu search (TS), particle swarm optimization 

(PSO), among others. However, the vast majority of 
promising results of EAs are devoted to 
unconstrained optimization, but most practical 
problems in real-world are the ones with constraints. 
In the literature, there have several ways to deal with 
constraints. Constrained function optimization is an 
extremely useful tool that can be utilized in almost 
every facet of engineering, operations research, 
mathematics, etc. Therefore, there is always a 
necessity to create alternative ways of dealing with 
both equality and inequality constraints more 
effectively. A general formulation for constrained 
optimization is as follows: (Price et al., 2005)  
Find ( )0 1,  , ,  ,   1

D
D−x x x x xK K…  = ∈ℜ

( )f x
( ) 0,   1,  2, ,  m

, subject to： Minimize：
x m Mγ ≤ =K …

( ) 0,   1,  2, ,  
, Inequality constraints：
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, 
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Early analogies between the mechanism of natural 
selection and a learning process led to the 
development of the so-called “evolutionary 
algorithms” (EAs, Back, 1996), in which the main 
goal is to simulate the evolutionary process in a 
computer. Constraints generally make optimization 
problems the way harder for EAs in that they can 
cause forbidden regions on the objective function 
landscape, thus restricting the arbitrary movement of 
search vectors. The search strategy in our approach 
is to use differential evolution (DE) algorithms 
combining with a dynamic penalty function for 
continuous constrained optimization.  

The organization of this paper is organized as 
follows. In section 2, we briefly review the methods 
of constraint handling from recent literature, and the 
basic differential evaluation algorithm is revisited. 

 



 

Sections 3-4 present the proposed algorithm and 
evaluate the performance among several EAs for 
constrained problems. At the end, the conclusion is 
drawn and the directions of further research are 
provided.  

2. BACKGROUND 
Differential evolution (DE) algorithm was first 
introduced by Storn and Price (1997) to optimize 
various continuous nonlinear functions. In essence, 
DE generates new vectors by adding the weighted 
difference between two population vectors to a third 
vector, and this operation is called mutation. 
Afterwards, crossover is used to mix mutated 
vector’s parameters with the parameters with another 
predetermined vector, the target vector, to yield the 
so-called trial vector. The last operation is called 
“selection”. Each population vector has to serve 
once as the target vector so that exactly the number-
of-population (NP) competitions take place in every 
generation.  

Some previous algorithms have been proposed for 
solving constrained problems with DE. Storn 
proposed constraint adaptation in 1999 (Storn, 1999), 
in which all the constraints of the problem at hand 
are relaxed, so that all the individuals in the initial 
population become feasible. The constraints are 
reduced toward their original versions at each 
generation, but the individuals must always remain 
feasible. Another constraint-handling technique is 
proposed by Lampinen (2002) (see also Price et al., 
2005). Since weight selection tends to be a trial and 
error optimization problem in its own right, simpler 
direct constraint handling methods have been 
designed that do not require the user to “tune” 
penalty weights. This idea was extended by Storn as 
CADE (Constraint Adaptation with Differential 
Evolution) (Storn, 1999) to enhance DE’s range of 
applications. Lampinen has devised a similar method 
that shows improved convergence speed when 
compared to CADE. Different from standard DE, 
each population vector is assigned not just one, but 
an array of objective values. The array contains both 
each vector’s objective function’s value and its 
constraint function values. He described some rules 
for the replacement made during the selection 
procedure. Lampinen’s constraint handling approach 
can reduce the computational effort on evaluating 
vectors. Not only the objective function has not to be 
evaluated when one or both vectors are infeasible, 
but also a vector can also be rejected before all its 

constraint violations have been computed. So, the 
merit of this method is saving time. 

The most common approach adopted to deal with 
constrained search space is penalty functions. 
Penalty function was proposed by Courant (1943) 
originally and later expanded by Carroll (1961) and 
Fiacco and McCormick (1968). It gets the idea that 
is to transform a constrained-optimization problem 
into an unconstrained one by adding a large value to 
the objective function based on the amount of 
constraint violation present in a certain solution. In 
classical optimization, two kinds of penalty 
functions are considered: exterior and interior. In the 
case of exterior method, all vectors start from 
infeasible solution and move towards the feasible 
region. The solution sequentially searched 
approaches asymptotically the optimal point. In the 
case of interior methods, the penalty term is chosen 
such that its value will be small at points away from 
the constraint boundaries and will tend to infinity as 
the constraint boundaries are approached. Then if 
starting from a feasible point, the subsequent points 
generated will always lie within the feasible region 
since the constraint boundaries act as barriers during 
the optimization process (Rao, 1996). 

Most researchers in the EA community tend to 
choose exterior penalties, because they do not 
require an initial solution be feasible. However, it is 
also an important drawback of interior penalties. The 
researchers need to find an initial feasible solution 
when they use interior penalties for constrained 
optimization problem.  

The general formulation of the exterior penalty 
function can be given by 

( ) ( )
1 1

pn

i i j j
i j

x f x r G c Lφ
= =

= ± × + ×
⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑K K , 

where ( )xφ K  is the Lagrange-type objective function 
to be optimized, and  and i  are functions of the 
constraints 

iG L
( )ig xK  and ( )jh xK , respectively. ir  and 

j  are positive constants normally called “penalty 
factors”. The most common forms of  and i  are 
c

iG L
( )[ ]1max 0,iG g x

βK  and ( )j jL h x
γ

== K  where β  
and γ  are normally chosen 1 or 2 (Coello Coello, 
2002). 

Penalty functions can deal both with equality and 
inequality constraints, and the normal approach is to 
transform an equality to an inequality of the 
form ( ) 0jh x ε− ≤K where ε  is the tolerance 
allowed (a very small value). When using a penalty 



 

function, the amount of constraint violation is 
calculated to penalize an infeasible solution so that 
feasible solutions are favored by the selection 
process (Mezura-Montes et al., 2005).  
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Despite the popularity of penalty functions in 
constrained optimization, they have several 
drawbacks from which the main one is that they 
require a careful fine turning of the penalty factors 
that accurately estimates the degree of penalization 
to be applied as to approach efficiently the feasible 
region. This is due to the fact that if the penalty is 
too high or too low, then the problem might become 
more difficult to be solved by EAs. If setting a large 
quantity of the penalty, more emphasis is placed on 
obtaining feasibility and the solution will move very 
quickly toward a feasible region. Then, the vectors 
will tend to converge to feasible point even if it is far 
from optimal. However, if the penalty is set to a 
small quantity, less emphasis is placed on feasibility, 
and the vectors may never converge to a feasible 
solution (Joines and Houck, 1994). So how to select 
a suitable penalty factor for optimization with 
constraints is a key issue in this study.  

Figure 1 Three different increasing trends of 
dynamic penalty factors if Ck is 100.  

3. DIFFERENTIAL EVOLUTION WITH 
DYNAMIC PENALTY FUNCTION 

The algorithm to be presented is to apply DE to 
solving constrained optimization coupled with a 
dynamic penalty function, termed DE_DP. DE is a 
relatively new EA proposed by Price and Storn 
(1997). It can be classified as a population-based 
algorithm and purely heuristic in computation. The 
algorithm uses the special mutation and crossover 
operators, based on the linear combination of three 
individuals, and the selection process is performed 
via deterministic tournament selection between the 
parent (target) and the child (trial) created by it. 
Because the original DE is not well suited for 
constrained problems, a dynamic penalty function is 
particularly devised, aiming to enhance the 
convergence speed and accuracy. Dynamic penalty 
method produces penalty function values that 
changes with iteration, that is, strictly increasing 
during the optimization process. In the initial stage 
of optimization, penalty values are set very low and, 
in one of the three cases, almost close to zero. 
Subsequently, it increases as the population evolves. 
In the early stage, increasing penalty will make the 
search with EAs accept nearly all solutions whether 
feasible or infeasible, and the solution only moves to 
one that has a better function value. In the later stage, 

the penalty of infeasible solutions is given very high, 
and solutions would not accept another infeasible 
one and the search will stay in several disjointed 
feasible regions. This method would make the search 
progress of EAs explore the feasible region 
(including the global optimum) at the early time, and 
then the solutions in the population will converge to 
the global optimum eventually if the dynamic 
penalty function is appropriately chosen.  

Note again that, in this study, the equality constraint 
is transformed into the inequality one by the 
function ( ) 0jh x ε− ≤K where ε  is a tolerance 
allowed that is always a very small value (say, 410−  
opted in this paper). Then, the dynamic penalty 
function used herein can be expressed by 

( ) ( ) ( )[ ]( ),
1

max 0,  
m

k i i
i

x f x D g xφ
=

= + ×∑K K K , 

where ( )f xK  is the original objective function, m is 
number of constraints, ( )ig xK  is the constrained 
function violation, and D  is the dynamic penalty 
factor. The subscript k  denotes the type of penalty 
factors. To gain more knowledge concerning the 
penalty factor design, three strategies of increasing 
penalty factors 1D 、 2D  and 3D  are considered as 
below:  

max1 1 , 1, ,  i maxD g g C i gα α= × = … , 

( )( )2 max 2 max1 ,  iD G g g C iα α= − − × = … 1, , g , 

3 3 max( ),  1, ,  i maxD g C g i g= × = … , 

where ig  is the current iteration (i.e., generation in 
evolutionary computation), maxg  is the maximum 

 



 

iteration, α  is the exponential coefficient, and C  is 
the maximum penalty factor in the last iteration. 1D  
and 2D  are of exponential type, referred to as the 
nonlinear inertia weight variation in particle swarm 
optimization borrowed from Chatterjee and Siarry 
(2006), and 3D  is a typical linear growth function. 
The designed increasing penalty function would 
prevent the pitfall of premature convergence 
resulting from using a fixed penalty factor. Figure 1 
shows the plot of these three kinds of dynamic 
penalty factors where the maximum penalty factor is 
given 100. Henceforth, DE algorithms for 
constrained optimization with three different 
dynamic penalty factors are dubbed DE_DP1, 
DE_DP2 and DE_DP3 for short, respectively.  

Table 1 Parameters setting for each test problem. 

As the solution violates the constraints over the 
allowable range, the boundary constraint handling 
mechanism is triggered to reinitialize the input 
variables. The boundary constraint handling method 
is defined by 

( ) (0,1i L U L )x x rand x x= + × −

)
,  

if ( ) (i L i Ux x x x< ∨ > , 

where Lx  and Ux  are the lower and the upper 
bounds of the variable x. The pseudo-code of 
DE_DP is presented in the following:  
Initialize (Vectors, Parameters) 

Evaluate (Vectors, ( )f xK ) 

t=0 

do: 

Update (Penalty_factor) 

for (i=1 to NP) 

Mutate & Recombine (Vectors) 

Evaluate(Vectors, ( )f xK  ,Constraints) 

Select (Vectors) 

end for 

t=t+1 

while (stopping criterion is met). 

All vectors are initialized in line 1 and evaluated 
with the objective function, and then enter the while 
loop until reaching the stopping criterion. In every 
iteration, the penalty factor is updated first, then 
mutation and crossover operations are performed to 
seek vectors with better objective values by selection 
operation after evaluating all vectors.  

4. COMPUTATIONAL EXPERIMENTS 

4.1. Parameters setting of DE_DP 
The major variables of DE contain NP, F and CR. 
NP is the population size of DE, and it is kept fixed 
during the optimization process. According to a 
reasonable choice suggested by Price et al. (2005), 
NP is between 5*D and 10*D but NP must be at 
least 4 to ensure that DE will have enough mutually 
different vectors with which to work. To the best of 
our knowledge, no optimal choice of the scaling 
factor F has been suggested in the literature of DE 
(Kaelo and Ali, 2006). For instance, Price (1999) 
suggested that F is a value inside [0.4, 0.8], and 
dynamically calculated values are suggested by Ali 
(2002). However in original DE, F value is so 
chosen as to fall in [0, 2]. CR is the crossover 
constant between [0, 1], and it is found that CR = 0.5 
is a good choice by Kaelo and Ali (2006). A good, 
first choice for CR is 0.1. Yet, since a large CR often 
speeds up convergence, to first try CR = 0.9 or CR = 
1.0 is appropriate in order to see if a quick solution 
is possible (Storn and Price, 1997). Then kC  is the 
maximum penalty factor value at the last iteration, 
and α  is the exponential coefficient.  

A suite of six well-known test problems named G1 
to G13 (see details in Hedar and Fukushima, 2006) 
attached in Appendix A are used to compare three 
EAs. The parameters used in our method are listed in 
table 1. The characteristics of those test problems are 
deliberately selected diverse enough to cover a 
variety of complexities that constrained optimization 
problems might face. DE_DP are applied to solving 
each problem for 30 independent runs with random 
initial solutions. The existing EAs taken from the 
recent literature for the comparison purpose are the 

Problem NP D F CR max_iter 1C  2C  3C α
G1 10 13 0.8 0.01 1000 100 100 100 2

G2 70 20 0.5 0.2 2000 30 30 32 2

G4 10 5 0.8 0.5 800 7000 5000 5000 2

G6 10 2 0.8 0.5 300 15000 5000 5000 2

G8 10 2 0.7 0.7 100 700 200 200 2

G13 50 5 0.9 0.7 2000 0.5 0.5 0.5 2



 

derivative-free filter simulated annealing method 
(FSA) proposed by Hedar and Fukushima (2006) 
and the cultured differential evolution (CDE) 
proposed by Becerra and Coello Coello (2006).  

Table 2 Results of FSA, CDE and DE with three kinds of dynamic penalty function for G1-G13. 

Pr. Type Best known   FSA CDE DE_DP1 DE_DP2 DE_DP3 
G1 min -15 Best -14.999105 -15 -15 -15 -15 

   Av. -14.993316 -14.999996 -14.9999911 -15 -15 
   Worst -14.979977 -14.999993 -14.9999142 -14.9999998 -14.9999998
   SD 0.004813 0.000002 2.26363E-05 3.65333E-08 3.18504E-08
   NFE 205748 100000 10000 10000 10000 

G2 max 0.803619 Best 0.7549125 0.803619 0.80307114 0.80314778 0.803192843
   Av. 0.3717081 0.724886 0.802151962 0.802332575 0.801520381
   Worst 0.271311 0.590908 0.792424334 0.800544502 0.792411578
   SD 0.098023 0.070125 0.001861753 0.000510268 0.002453063
   NFE 227832 100000 140000 140000 140000 

G4 min -30665.539 Best -30665.538 -30665.5387 -30665.5387 -30665.5387 -30665.5387
   Av. -30665.4665 -30665.5387 -30665.5357 -30665.5385 -30665.5366
   Worst -30664.688 -30665.5387 -30665.4812 -30665.5374 -30665.4958
   SD 0.173218 0 0.01039085 0.00025683 0.007730471
   NFE 86154 100000 8000 8000 8000 

G6 min -6961.81388 Best -6961.81388 -6961.81388 -6961.81387 -6961.81388 -6961.81388
   Av. -6961.81388 -6961.81388 -6961.60674 -6961.81388 -6961.81387
   Worst -6961.81388 -6961.81388 -6956.19553 -6961.81387 -6961.81376
   SD 0 0 1.023213676 1.20882E-07 2.29632E-05
   NFE 44538 100000 3000 3000 3000 

G8 max 0.095825 Best 0.095825 0.095825 0.095825041 0.095825041 0.095825041
   Av. 0.095825 0.095825 0.091367627 0.095825041 0.095825041
   Worst 0.095825 0.095825 0.029143804 0.095825041 0.095825041
   SD 0 0 0.016914438 1.1977E-16 4.61655E-14
   NFE 56476 100000 1000 1000 1000 

G13 min 0.0539498 Best 0.0539498 0.05618 0.053949856 0.053949989 0.053949879
   Av. 0.2977204 0.288324 0.053949961 0.053954978 0.05395059
   Worst 0.4388511 0.3921 0.053950353 0.053987567 0.053953035
   SD 0.188652 0.167095 1.37788E-07 9.08251E-06 8.75937E-07
      NFE 120268 100000 100000 100000 100000 

4.2. Experimental results  
The comparison results of DE_DP in terms of test 
problems are reported in table 2. All test problems 
are minimization problems except problems G2 and 
G8. In problem G1, DE_DP can reach the minimum 
stably with much fewer number of function 
evaluations (NFE) than FSA and CDE. The results 

of all three dynamic penalty factor strategies in G2 
dictate a better stability in convergence than FSA 
and CDE with small standard deviations. 
Nonetheless, DE_DP requires more NFE than CDE. 
In the problems G4 and G6, DE_DP could converge 
to minimum swiftly with much fewer NFE than 
other two methods. DE_DP2 could attain stably to 
the maximum in problem G8 as one hundredth of 
NFE as CDE is required. In problem G13, the three 
DE_DP algorithms outperform FSA and CDE in 
average objective values and the standard deviations. 
In Problems G1, G2 and G13, an improvement upon 
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the average objective value is reported by using the 
proposed algorithm. For the remaining problems, 
equally good performance on the average objective 
value is observed as FSA and CDE. On the whole, 
the proposed algorithms outperform dramatically 
FSA and CDE in NFE. It can be concluded from the 
experimental results that the second strategy of 
increasing penalty factor is more suitable than other 
two versions for testing these six problems. The 
reason is that the penalty factor in DE_DP2 owns a 
higher increasing rate than the other two strategies in 
the early generations, and gradually, the increasing 
rate turns flat. By the growth trend of 2D , the 
population vectors could explore as nearly feasible 
region as possible in every generations.  
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5. CONCLUSION AND FURTHER 
RESEARCH ( )10, ,10=U … ( )0, , 0=L …The bounds：  and . 

( )* 0.803619f =x 20n =, for . Best known value：A differential evolution based algorithm in 
combination with three different increasing 
strategies of dynamic penalty factor is presented for 
handling nonlinear constraint functions in this paper. 
The proposed algorithm is demonstrated by solving a 
suite of six well-known test problems taken from the 
open literature. The comparison with the existing 
two EAs, FSA and CDE, is reported as well. It can 
be shown from the experimental results that DE_DP 
exhibits competitive efficiency and effectiveness 
while solving 6 constrained optimization problems. 
The penalty function using the second strategy 
(DE_DP2) is suggested due to its excellent 
performance. Another prominent merit of the 
proposed algorithm is the economy of the number of 
function evaluations (NFE) required.  

A.4. problem G4 
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APPENDICES 
xA.1. problem G1 
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A.6. problem G6 
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stationary penalty functions to solve nonlinear 
constrained optimization problems with GA's", IEEE 
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modified differential evolution algorithms", European 
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differential evolution for constrained optimization, 
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