

DIFFERENTIAL EVOLUTION WITH DYNAMIC PENALTY FUNCTION FOR
SOLVING CONSTRAINED CONTINUOUS OPTIMIZATION PROBLEMS

Shu-Kai S. Fan
Department of Industrial Engineering and Management

Yuan Ze University
Taiwan (R.O.C.)

simonfan@saturn.yzu.edu.tw

Kuo-Chih Yeh
Yu-Chiang Chuang*

Department of Industrial Engineering and Management
Yuan Ze University

Taiwan (R.O.C.)
{wilddog, *jack}@r2r.iem.yzu.edu.tw

ABSTRACT
This paper presents a differential-evolution-type
algorithm for solving constrained continuous
optimization problems. The proposed differential
evolution (DE) algorithm is developed based upon
the penalty function approach, where constraint
violation is penalized by placing the constraints into
the objective function. Penalty functions can deal
both with equality and inequality constraints; in this
study, equality constraints are transformed into
inequality ones. In addition, to handle infeasibility
during DE search, a random re-initialization
procedure is executed to produce a new potential
solution inside the allowable ranges. Three different
types of increasing penalty factors are compared for
their performance on convergence. The performance
measure includes the best objective value achieved
and the number of function evaluations required.
The recommendation for the selection of parameter
setting in the new algorithm is given through a series
of simulation optimizations. The experimental results
obtained by solving a variety of benchmark functions
are used to demonstrate the effectiveness and
efficiency of the penalty-function DE algorithm.

KEYWORDS
Constrained optimization problem; Evolutionary
algorithms; Differential evolution (DE); Meta-
heuristics; Adaptive penalty function.

1. INTRODUCTION
Evolutionary algorithms have proved a very
competitive technique in a wide range of engineering
applications. Renowned meta-heuristic algorithms
include simulated annealing (SA), genetic algorithm
(GA), Tabu search (TS), particle swarm optimization

(PSO), among others. However, the vast majority of
promising results of EAs are devoted to
unconstrained optimization, but most practical
problems in real-world are the ones with constraints.
In the literature, there have several ways to deal with
constraints. Constrained function optimization is an
extremely useful tool that can be utilized in almost
every facet of engineering, operations research,
mathematics, etc. Therefore, there is always a
necessity to create alternative ways of dealing with
both equality and inequality constraints more
effectively. A general formulation for constrained
optimization is as follows: (Price et al., 2005)
Find ()0 1, , , , 1

D
D−x x x x xK K… = ∈ℜ

()f x
() 0, 1, 2, , m

, subject to： Minimize：
x m Mγ ≤ =K …

() 0, 1, 2, ,
, Inequality constraints：

xEquality constraints： n n Nϕ = =K …

, , , 0, 1, , 1j L j j Ux x x j D

,
and boundary constraints：

≤ = −… . ≤

Early analogies between the mechanism of natural
selection and a learning process led to the
development of the so-called “evolutionary
algorithms” (EAs, Back, 1996), in which the main
goal is to simulate the evolutionary process in a
computer. Constraints generally make optimization
problems the way harder for EAs in that they can
cause forbidden regions on the objective function
landscape, thus restricting the arbitrary movement of
search vectors. The search strategy in our approach
is to use differential evolution (DE) algorithms
combining with a dynamic penalty function for
continuous constrained optimization.

The organization of this paper is organized as
follows. In section 2, we briefly review the methods
of constraint handling from recent literature, and the
basic differential evaluation algorithm is revisited.

Sections 3-4 present the proposed algorithm and
evaluate the performance among several EAs for
constrained problems. At the end, the conclusion is
drawn and the directions of further research are
provided.

2. BACKGROUND
Differential evolution (DE) algorithm was first
introduced by Storn and Price (1997) to optimize
various continuous nonlinear functions. In essence,
DE generates new vectors by adding the weighted
difference between two population vectors to a third
vector, and this operation is called mutation.
Afterwards, crossover is used to mix mutated
vector’s parameters with the parameters with another
predetermined vector, the target vector, to yield the
so-called trial vector. The last operation is called
“selection”. Each population vector has to serve
once as the target vector so that exactly the number-
of-population (NP) competitions take place in every
generation.

Some previous algorithms have been proposed for
solving constrained problems with DE. Storn
proposed constraint adaptation in 1999 (Storn, 1999),
in which all the constraints of the problem at hand
are relaxed, so that all the individuals in the initial
population become feasible. The constraints are
reduced toward their original versions at each
generation, but the individuals must always remain
feasible. Another constraint-handling technique is
proposed by Lampinen (2002) (see also Price et al.,
2005). Since weight selection tends to be a trial and
error optimization problem in its own right, simpler
direct constraint handling methods have been
designed that do not require the user to “tune”
penalty weights. This idea was extended by Storn as
CADE (Constraint Adaptation with Differential
Evolution) (Storn, 1999) to enhance DE’s range of
applications. Lampinen has devised a similar method
that shows improved convergence speed when
compared to CADE. Different from standard DE,
each population vector is assigned not just one, but
an array of objective values. The array contains both
each vector’s objective function’s value and its
constraint function values. He described some rules
for the replacement made during the selection
procedure. Lampinen’s constraint handling approach
can reduce the computational effort on evaluating
vectors. Not only the objective function has not to be
evaluated when one or both vectors are infeasible,
but also a vector can also be rejected before all its

constraint violations have been computed. So, the
merit of this method is saving time.

The most common approach adopted to deal with
constrained search space is penalty functions.
Penalty function was proposed by Courant (1943)
originally and later expanded by Carroll (1961) and
Fiacco and McCormick (1968). It gets the idea that
is to transform a constrained-optimization problem
into an unconstrained one by adding a large value to
the objective function based on the amount of
constraint violation present in a certain solution. In
classical optimization, two kinds of penalty
functions are considered: exterior and interior. In the
case of exterior method, all vectors start from
infeasible solution and move towards the feasible
region. The solution sequentially searched
approaches asymptotically the optimal point. In the
case of interior methods, the penalty term is chosen
such that its value will be small at points away from
the constraint boundaries and will tend to infinity as
the constraint boundaries are approached. Then if
starting from a feasible point, the subsequent points
generated will always lie within the feasible region
since the constraint boundaries act as barriers during
the optimization process (Rao, 1996).

Most researchers in the EA community tend to
choose exterior penalties, because they do not
require an initial solution be feasible. However, it is
also an important drawback of interior penalties. The
researchers need to find an initial feasible solution
when they use interior penalties for constrained
optimization problem.

The general formulation of the exterior penalty
function can be given by

() ()
1 1

pn

i i j j
i j

x f x r G c Lφ
= =

= ± × + ×
⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑K K ,

where ()xφ K is the Lagrange-type objective function
to be optimized, and and i are functions of the
constraints

iG L
()ig xK and ()jh xK , respectively. ir and

j are positive constants normally called “penalty
factors”. The most common forms of and i are
c

iG L
()[]1max 0,iG g x

βK and ()j jL h x
γ

== K where β
and γ are normally chosen 1 or 2 (Coello Coello,
2002).

Penalty functions can deal both with equality and
inequality constraints, and the normal approach is to
transform an equality to an inequality of the
form () 0jh x ε− ≤K where ε is the tolerance
allowed (a very small value). When using a penalty

function, the amount of constraint violation is
calculated to penalize an infeasible solution so that
feasible solutions are favored by the selection
process (Mezura-Montes et al., 2005).

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

iteration

pe
na

lty
 fa

ct
or

D2 D3 D1

Despite the popularity of penalty functions in
constrained optimization, they have several
drawbacks from which the main one is that they
require a careful fine turning of the penalty factors
that accurately estimates the degree of penalization
to be applied as to approach efficiently the feasible
region. This is due to the fact that if the penalty is
too high or too low, then the problem might become
more difficult to be solved by EAs. If setting a large
quantity of the penalty, more emphasis is placed on
obtaining feasibility and the solution will move very
quickly toward a feasible region. Then, the vectors
will tend to converge to feasible point even if it is far
from optimal. However, if the penalty is set to a
small quantity, less emphasis is placed on feasibility,
and the vectors may never converge to a feasible
solution (Joines and Houck, 1994). So how to select
a suitable penalty factor for optimization with
constraints is a key issue in this study.

Figure 1 Three different increasing trends of
dynamic penalty factors if Ck is 100.

3. DIFFERENTIAL EVOLUTION WITH
DYNAMIC PENALTY FUNCTION

The algorithm to be presented is to apply DE to
solving constrained optimization coupled with a
dynamic penalty function, termed DE_DP. DE is a
relatively new EA proposed by Price and Storn
(1997). It can be classified as a population-based
algorithm and purely heuristic in computation. The
algorithm uses the special mutation and crossover
operators, based on the linear combination of three
individuals, and the selection process is performed
via deterministic tournament selection between the
parent (target) and the child (trial) created by it.
Because the original DE is not well suited for
constrained problems, a dynamic penalty function is
particularly devised, aiming to enhance the
convergence speed and accuracy. Dynamic penalty
method produces penalty function values that
changes with iteration, that is, strictly increasing
during the optimization process. In the initial stage
of optimization, penalty values are set very low and,
in one of the three cases, almost close to zero.
Subsequently, it increases as the population evolves.
In the early stage, increasing penalty will make the
search with EAs accept nearly all solutions whether
feasible or infeasible, and the solution only moves to
one that has a better function value. In the later stage,

the penalty of infeasible solutions is given very high,
and solutions would not accept another infeasible
one and the search will stay in several disjointed
feasible regions. This method would make the search
progress of EAs explore the feasible region
(including the global optimum) at the early time, and
then the solutions in the population will converge to
the global optimum eventually if the dynamic
penalty function is appropriately chosen.

Note again that, in this study, the equality constraint
is transformed into the inequality one by the
function () 0jh x ε− ≤K where ε is a tolerance
allowed that is always a very small value (say, 410−
opted in this paper). Then, the dynamic penalty
function used herein can be expressed by

() () ()[](),
1

max 0,
m

k i i
i

x f x D g xφ
=

= + ×∑K K K ,

where ()f xK is the original objective function, m is
number of constraints, ()ig xK is the constrained
function violation, and D is the dynamic penalty
factor. The subscript k denotes the type of penalty
factors. To gain more knowledge concerning the
penalty factor design, three strategies of increasing
penalty factors 1D 、 2D and 3D are considered as
below:

max1 1 , 1, , i maxD g g C i gα α= × = … ,

()()2 max 2 max1 , iD G g g C iα α= − − × = … 1, , g ,

3 3 max(), 1, , i maxD g C g i g= × = … ,

where ig is the current iteration (i.e., generation in
evolutionary computation), maxg is the maximum

iteration, α is the exponential coefficient, and C is
the maximum penalty factor in the last iteration. 1D
and 2D are of exponential type, referred to as the
nonlinear inertia weight variation in particle swarm
optimization borrowed from Chatterjee and Siarry
(2006), and 3D is a typical linear growth function.
The designed increasing penalty function would
prevent the pitfall of premature convergence
resulting from using a fixed penalty factor. Figure 1
shows the plot of these three kinds of dynamic
penalty factors where the maximum penalty factor is
given 100. Henceforth, DE algorithms for
constrained optimization with three different
dynamic penalty factors are dubbed DE_DP1,
DE_DP2 and DE_DP3 for short, respectively.

Table 1 Parameters setting for each test problem.

As the solution violates the constraints over the
allowable range, the boundary constraint handling
mechanism is triggered to reinitialize the input
variables. The boundary constraint handling method
is defined by

() (0,1i L U L)x x rand x x= + × −

)
,

if () (i L i Ux x x x< ∨ > ,

where Lx and Ux are the lower and the upper
bounds of the variable x. The pseudo-code of
DE_DP is presented in the following:
Initialize (Vectors, Parameters)

Evaluate (Vectors, ()f xK)

t=0

do:

Update (Penalty_factor)

for (i=1 to NP)

Mutate & Recombine (Vectors)

Evaluate(Vectors, ()f xK ,Constraints)

Select (Vectors)

end for

t=t+1

while (stopping criterion is met).

All vectors are initialized in line 1 and evaluated
with the objective function, and then enter the while
loop until reaching the stopping criterion. In every
iteration, the penalty factor is updated first, then
mutation and crossover operations are performed to
seek vectors with better objective values by selection
operation after evaluating all vectors.

4. COMPUTATIONAL EXPERIMENTS

4.1. Parameters setting of DE_DP
The major variables of DE contain NP, F and CR.
NP is the population size of DE, and it is kept fixed
during the optimization process. According to a
reasonable choice suggested by Price et al. (2005),
NP is between 5*D and 10*D but NP must be at
least 4 to ensure that DE will have enough mutually
different vectors with which to work. To the best of
our knowledge, no optimal choice of the scaling
factor F has been suggested in the literature of DE
(Kaelo and Ali, 2006). For instance, Price (1999)
suggested that F is a value inside [0.4, 0.8], and
dynamically calculated values are suggested by Ali
(2002). However in original DE, F value is so
chosen as to fall in [0, 2]. CR is the crossover
constant between [0, 1], and it is found that CR = 0.5
is a good choice by Kaelo and Ali (2006). A good,
first choice for CR is 0.1. Yet, since a large CR often
speeds up convergence, to first try CR = 0.9 or CR =
1.0 is appropriate in order to see if a quick solution
is possible (Storn and Price, 1997). Then kC is the
maximum penalty factor value at the last iteration,
and α is the exponential coefficient.

A suite of six well-known test problems named G1
to G13 (see details in Hedar and Fukushima, 2006)
attached in Appendix A are used to compare three
EAs. The parameters used in our method are listed in
table 1. The characteristics of those test problems are
deliberately selected diverse enough to cover a
variety of complexities that constrained optimization
problems might face. DE_DP are applied to solving
each problem for 30 independent runs with random
initial solutions. The existing EAs taken from the
recent literature for the comparison purpose are the

Problem NP D F CR max_iter 1C 2C 3C α
G1 10 13 0.8 0.01 1000 100 100 100 2

G2 70 20 0.5 0.2 2000 30 30 32 2

G4 10 5 0.8 0.5 800 7000 5000 5000 2

G6 10 2 0.8 0.5 300 15000 5000 5000 2

G8 10 2 0.7 0.7 100 700 200 200 2

G13 50 5 0.9 0.7 2000 0.5 0.5 0.5 2

derivative-free filter simulated annealing method
(FSA) proposed by Hedar and Fukushima (2006)
and the cultured differential evolution (CDE)
proposed by Becerra and Coello Coello (2006).

Table 2 Results of FSA, CDE and DE with three kinds of dynamic penalty function for G1-G13.

Pr. Type Best known FSA CDE DE_DP1 DE_DP2 DE_DP3
G1 min -15 Best -14.999105 -15 -15 -15 -15

 Av. -14.993316 -14.999996 -14.9999911 -15 -15
 Worst -14.979977 -14.999993 -14.9999142 -14.9999998 -14.9999998
 SD 0.004813 0.000002 2.26363E-05 3.65333E-08 3.18504E-08
 NFE 205748 100000 10000 10000 10000

G2 max 0.803619 Best 0.7549125 0.803619 0.80307114 0.80314778 0.803192843
 Av. 0.3717081 0.724886 0.802151962 0.802332575 0.801520381
 Worst 0.271311 0.590908 0.792424334 0.800544502 0.792411578
 SD 0.098023 0.070125 0.001861753 0.000510268 0.002453063
 NFE 227832 100000 140000 140000 140000

G4 min -30665.539 Best -30665.538 -30665.5387 -30665.5387 -30665.5387 -30665.5387
 Av. -30665.4665 -30665.5387 -30665.5357 -30665.5385 -30665.5366
 Worst -30664.688 -30665.5387 -30665.4812 -30665.5374 -30665.4958
 SD 0.173218 0 0.01039085 0.00025683 0.007730471
 NFE 86154 100000 8000 8000 8000

G6 min -6961.81388 Best -6961.81388 -6961.81388 -6961.81387 -6961.81388 -6961.81388
 Av. -6961.81388 -6961.81388 -6961.60674 -6961.81388 -6961.81387
 Worst -6961.81388 -6961.81388 -6956.19553 -6961.81387 -6961.81376
 SD 0 0 1.023213676 1.20882E-07 2.29632E-05
 NFE 44538 100000 3000 3000 3000

G8 max 0.095825 Best 0.095825 0.095825 0.095825041 0.095825041 0.095825041
 Av. 0.095825 0.095825 0.091367627 0.095825041 0.095825041
 Worst 0.095825 0.095825 0.029143804 0.095825041 0.095825041
 SD 0 0 0.016914438 1.1977E-16 4.61655E-14
 NFE 56476 100000 1000 1000 1000

G13 min 0.0539498 Best 0.0539498 0.05618 0.053949856 0.053949989 0.053949879
 Av. 0.2977204 0.288324 0.053949961 0.053954978 0.05395059
 Worst 0.4388511 0.3921 0.053950353 0.053987567 0.053953035
 SD 0.188652 0.167095 1.37788E-07 9.08251E-06 8.75937E-07
 NFE 120268 100000 100000 100000 100000

4.2. Experimental results
The comparison results of DE_DP in terms of test
problems are reported in table 2. All test problems
are minimization problems except problems G2 and
G8. In problem G1, DE_DP can reach the minimum
stably with much fewer number of function
evaluations (NFE) than FSA and CDE. The results

of all three dynamic penalty factor strategies in G2
dictate a better stability in convergence than FSA
and CDE with small standard deviations.
Nonetheless, DE_DP requires more NFE than CDE.
In the problems G4 and G6, DE_DP could converge
to minimum swiftly with much fewer NFE than
other two methods. DE_DP2 could attain stably to
the maximum in problem G8 as one hundredth of
NFE as CDE is required. In problem G13, the three
DE_DP algorithms outperform FSA and CDE in
average objective values and the standard deviations.
In Problems G1, G2 and G13, an improvement upon

()
()

8 6 7 11

9 8 9 12

 2 0,
 2 0,
 0, 1, , 13,
 1, 1, , 13.

i

i

g x x x x
g x x x x
x i
x i

= − − + ≤
= − − + ≤

≥ =
≤ =

…
…

the average objective value is reported by using the
proposed algorithm. For the remaining problems,
equally good performance on the average objective
value is observed as FSA and CDE. On the whole,
the proposed algorithms outperform dramatically
FSA and CDE in NFE. It can be concluded from the
experimental results that the second strategy of
increasing penalty factor is more suitable than other
two versions for testing these six problems. The
reason is that the penalty factor in DE_DP2 owns a
higher increasing rate than the other two strategies in
the early generations, and gradually, the increasing
rate turns flat. By the growth trend of 2D , the
population vectors could explore as nearly feasible
region as possible in every generations.

The bounds：

()1,1,1,1,1,1,1,1,1,100,100,100,1=U and
()0, , 0 .=L …

Global minimum：
() ()* *1,1,1,1,1,1,1,1,1,3,3,3,1 , 15f= = −x x

A.2. problem G2

() () ()

()
()

4 2
1 1

2
1

1 1

2 1

cos 2 cos
max

s.t. 0.75 0
0.75 0

n n
i i i

n
i i

n
i i

n
i i

ix x
f x

ix
g x x
g x x n

= =

=

=

=

− ∏
=

= −∏ + ≤
= + ≤

∑
∑

∑

5. CONCLUSION AND FURTHER
RESEARCH ()10, ,10=U … ()0, , 0=L …The bounds： and .

()* 0.803619f =x 20n =, for . Best known value：A differential evolution based algorithm in
combination with three different increasing
strategies of dynamic penalty factor is presented for
handling nonlinear constraint functions in this paper.
The proposed algorithm is demonstrated by solving a
suite of six well-known test problems taken from the
open literature. The comparison with the existing
two EAs, FSA and CDE, is reported as well. It can
be shown from the experimental results that DE_DP
exhibits competitive efficiency and effectiveness
while solving 6 constrained optimization problems.
The penalty function using the second strategy
(DE_DP2) is suggested due to its excellent
performance. Another prominent merit of the
proposed algorithm is the economy of the number of
function evaluations (NFE) required.

A.4. problem G4
()

() ()
() ()
() ()
() ()
() ()
() ()

2
3 1

1

1

2

3

4

5

6

min 5.3578547 0.8356891
37.293239 40792.141

st. 92 0,
 0,
 110 0,
 90 0,
 25 0,
 20 0,

5f x x
x

g x u x
g x u x
g x u x
g x x
g x x
g x x

υ
ω
ω

= +
+ −
= − ≤
= − ≤
= − ≤
= − + ≤
= − ≤
= − + ≤

x x

where
()

()

()

2 5

1 4 3 5

2 5
2

1 2 3

3 5

1 3 3 4

85.334407 0.0056858
 0.0006262 0.0022053 ,

80.51249 0.0071317
0.0029955 0.0021813 ,

9.300961 0.0047026
0.0012547 0.0019085 .

u x x x
x x x

x x
x x x

x x

x
x

x
x x x

υ

ω

= +
+ −

= +
+ +
= +
+ +

APPENDICES
xA.1. problem G1

()102, 45, 45, 45, 45=UThe bounds： and
()
()
()
()
()
()
()

4 4 13
2

1 1 5

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

min 5 5

st. 2 2 10 0,
 2 2 10 0,
 2 2 10 0,
 8 0,
 8 0,
 8 0,

i i i
i i i

f x x x x

g x x x x x
g x x x x x
g x x x x x
g x x x
g x x x
g x x x

= = =

= − −

= + + + − ≤
= + + + − ≤
= + + + − ≤
= − + ≤
= − + ≤
= − + ≤

∑ ∑ ∑

()7 4 5 10 2 0,g x x x x= − − + ≤

()78,33, 27, 27, 27=L
Global minimum：

()* 78,33, 29.995256025682, 45,36.775812905788 ,=x
()* 30665.539f = −x .

A.6. problem G6

()100,100=U and . ()13, 0=LThe bounds：
Global minimum：

() ()* *14.095,0.84296 , 6961.81388.f= = −x x

Joines, J. A., Houck, C. R., (1994), "On the use of non-
stationary penalty functions to solve nonlinear
constrained optimization problems with GA's", IEEE
Conference on Evolutionary Computation-Proceeding,
pp. 579-584.

A.8. problem G8

() () (
()

)

()
() ()

3
1 2

3
1 1 2

2
1 1 2

2
2 1 2

sin 2 sin 2
max

s.t. 1 0
 1 4 0.

x x
f x

x x x
g x x x
g x x x

π π
=

+
= − + ≤
= − + − ≤

The bounds： and (10,10=U) ()0, 0=L .
Global maximum：

 () ()* *1.2279713, 4.2453733 , 0.095825.f= =x x

)

Kaelo, P., Ali, M. M., (2006), "A numerical study of some
modified differential evolution algorithms", European
Journal of Operational Research Vol. 169, pp. 1176-
1184.

Lampinen, J., (2002), "A constraint handling approach for
the differential evolution algorithm", Proceedings of
the Congress on Evolutionary Computation 2002
(CEC'2002), vol. 2, Piscataway, pp. 1468-1473.

A.13. problem G13
()
()
()
()

1 2 3 4 5

2 2 2 2 2
1 1 2 3 4 5

1 2 3 4 5
3 3

1 1 2

min
s.t. 10 0,
 5 0,
 1 0.

x x x x xf x e
h x x x x x x
h x x x x x
h x x x

=
= + + + + − =
= − =
= + + =

The bounds： and

()2.3, 2.3,3.2,3.2,3.2=U

Landa Becerra, R., Coello Coell, C.A., (2006) "Cultured
differential evolution for constrained optimization,
Comput", Methods Appl. Mech Engrg. Vol. 195, pp.
304-311.

(2.3, 2.3, 3.2, 3.2, 3.2 .= − − − − −L Mezura-Montes, E., Velazquez-Reyes, J., and Coello
Coello, C. A., (2005) "Promising infeasibility and
multiple offspring incorporated to differential
evolution for constrained optimization", GECCO, pp.
225-232.

REFERENCES
Ali, M. M., Torn, A., (2002), "Topographical differential

evolution using pre-calculated differentials", in
Demyda, G., Saltenis, V., and Zilinskas, A., (eds.),
Stochastic and Global Optimization, Kluwer
Academic Publisher, London, pp. 1-17.

Price, K. V., Storn, R. M., and Lampinen, J. A., (2005),
"Differential Evolution: A Practical Approach to
Global Optimization", Springer, pp. 201-227.

Price, K., (1999), "An introduction to differential
evolution", in Corne, D., Dorigo, M., and Glover, F.,
(eds.), New Ideas in optimization, McGraw-Hill,
London, pp. 79-108.

Back, T., (Ed.), (1996), "Evolutionary Algorithms in
Theory and Practice", Oxford University Press, New
York.

Carroll, C. W., (1961), "The created response surface
technique for optimizing nonlinear restrained systems",
Operations Research, Vol. 9, pp. 169-184.

Rao, S. S., (1996), "Engineering Optimization", third ed.,
Wiley, New York.

Ricardo Landa Becerra, Carlos A. Coello Coello, Cultured
differential evolution for constrained optimization,
Comput. Methods Appl. Mech Engrg. 195 (2006)
4303-4322.

Chatterjee, A., Siarry, P., (2006), “Nonlinear inertia
weight variation for dynamic adaptation in particle
swarm optimization”, Computers & Operations
Research, Vol. 33, pp. 859-871

Storn, R., (1999), "System desine by constraint adaptation
and differential evolution", IEEE Trans. Evol. Comput.
3(1), pp. 22-34.

Coello Coello, C. A., (2002), "Theoretical and numerical
constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art", Computer
Methods in Applied Mechanics and Engineering, Vol.
191, pp. 1245-1287.

Storn, R., Price, K., (1997), "Differential evolution-a
simple and efficient heuristic for global optimization
over continuous spaces", Journal of Global
Optimization, Vol. 11, pp. 341-359.

Courant, R., (1943), "Variational methods for the solution
of problems of equilibrium and vibrations", Bull. Am.
Math. Soc 49, pp. 1-23.

Fiacco, A. V., McCormick, G. P., (1968), "Extension of
SUMT for nonlinear programming ： Equality
constraints and extrapolation", Manage. Sci. Vol. 12
No. 11, pp. 816-828.

Hedar, A., Fukushima, M., (2006), "Derivative-free filter
simulated annealing method for constrained
continuous global optimization", Journal of Global
Optimization, Vol. 35, pp. 521-549.

