CMAC-Based Fault Accommodation Control for Tank System

Chih-Min Lin* Chang-Chih Chung* Yu-Ju Liu# Daniel S. Yeung+
*Department of Electrical Engineering, Yuan Ze University, Chung-Li, Tao-Yuan, 320, Taiwan, R.O.C.
E-mail: cml@saturn.yzu.edu.tw
Department of Electrical Engineering, National Central University, Chung-Li, Tao-Yuan, 320, Taiwan, R.O.C.
+ South China University of Technology, Yuan Ze University

Abstract - This paper presents a learning approach using cerebellar model articulation controller (CMAC) to accommodate faults for a class of multivariable nonlinear systems. A CMAC is proposed to estimate the unknown fault. Then, an adaptive fault accommodation controller is derived based on Lyapunov function, so that the proposed control system can accommodate the faults with desired system stability. Finally, the proposed fault accommodation control system is applied to a tank control system. Simulation results show that the proposed method can effectively achieve the fault accommodation for this system.

Keywords: cerebellar model articulation controller (CMAC), fault accommodation, tank system.

I. INTRODUCTION

In the presence of a failure, an on-line approximator can be used to estimate the possible fault function. The fault accommodation requires that the fault is self-corrected, usually through control reconfiguration [1, 2]. Recently, neural networks have been applied for system identification and control [3, 4]. The most useful property of neural networks is their ability to uniformly approximate arbitrary input-output mappings on closed subsets. Several fault accommodation controls using neural networks have been proposed [5, 6]. However, the learning of neural network is slow since all the weights are updated during each learning cycle. Therefore, the effectiveness of the neural network is limited in problems requiring on-line learning.

Cerebellar model articulation controller (CMAC) is classified as a non-fully connected perceptron-like associative memory network with overlapping receptive-fields [7]. It has been applied to identify the nonlinear functions for its good generalization capability and fast learning property. The CMAC has been already validated to be able to approximate a nonlinear function over a domain of interest to any desired accuracy; and it intends to solve the fast size-growing problem and the learning difficult in currently available types of neural networks [8-10]. However, the conventional CMAC uses local constant binary receptive-field basis function. The disadvantage is that its output is constant within each quantized state and the derivative information is not preserved. For acquiring the derivative information of input and output variables, Chiang and Lin developed a CMAC network with differentiable Gaussian receptive-field basis function, and provided the convergence analyses of this network [11]. This makes CMAC a suitable candidate for a wide class of unknown system identification. This paper presents a fault accommodation design method for a class of multivariable nonlinear systems by using a CMAC to estimate the unknown fault. Finally, a tank control system is simulated to illustrate the effectiveness of the proposed design method.

II. PROBLEM FORMULATION

Consider a class of multivariable nonlinear dynamic systems described by [1], [6]

\[\dot{x}(t) = F(x(t), t) + G(x(t), t)[u(t) + \eta(x(t), t)] + B(t - T)f(x(t), t) \] (1)

where \(x \in \mathbb{R}^n \) is the state vector, \(u \in \mathbb{R}^m \) is the input, \(B(t - T) \in \mathbb{R}^{m \times m} \) is a matrix function
representing the time profile of failures where \(T \in \mathbb{R} \) is unknown time of occurrence of faults. The vector \(F \in \mathbb{R}^r \) and matrix \(G \in \mathbb{R}^{m \times r} \) represent the nominal model dynamics. The unknown nonlinear function \(f \in \mathbb{R}^r \) characterizes the change in the system due to a failure. The nonlinear function \(\eta \in \mathbb{R}^r \) represents system uncertainty including modeling error and disturbance, each component \(\eta_i \) of the system uncertainty \(\eta \) are assumed to be unstructured and bounded in a domain of interest:

\[
|\eta_i(x,t)| \leq \pi_i, \quad i=1,2,\ldots,m
\]

where \(\pi_i, \quad i=1,2,\ldots,m \) are positive constants. The diagonal \(B \) represents the time profiles of the fault:

\[
B(t-T) = \text{diag}(\beta_1(t-T)\cdots \beta_m(t-T))
\]

III. FAULT ACCOMMODATION USING CMAC NETWORK

Suppose a known nominal controller \(u_s \) causes the nominal system to exhibit some desired behavior. Consider a corrective control function to be designed, such that the control law is assumed to take the following form:

\[
u = u_s + u_c
\]

where \(u_c \) is the corrective control with fault accommodation.

Since CMAC has been validated to be able to approximate a nonlinear function with desired accuracy, it is utilized as the corrective controller to achieve fault accommodation.

A. CMAC Network

The architecture of CMAC is depicted in Fig. 1. The signal propagation and the basic function in each space of CMAC are introduced as follows.

1) Input space \(S \): For a given n-dimensional input space \(S=[s_1,s_2,\ldots,s_n]' \in \mathbb{R}^n \), each input state variable \(s_j \) must be quantized into discrete regions (called an element) according to given control space. The number of elements, \(n_s \), is termed as a resolution.

2) Association memory space \(A \): Several elements can be accumulated as a block. \(A \) denotes an association memory space with \(n_s \) regions (in this study). Each block performs a receptive-field basis function. The Gaussian function is adopted here as the receptive-field basis function which can be represented as

\[
\phi_k(s_j) = \exp \left[\sum_{j=1}^{n_s} \frac{(s_j - m_{kj})^2}{\sigma_{kj}^2} \right], \quad \text{for } k=1,2,\ldots,n_s
\]

where \(\phi_k(s_j) \) presents the \(k \)th block of the \(j \)th input \(s_j \) with the mean \(m_{kj} \) and variance \(\sigma_{kj} \).

3) Receptive-field space \(R \): Areas formed by blocks are called receptive-fields. The number of receptive-field, \(n_r \), is equal to \(n_s \). The multi-dimensional receptive-field function is defined as

\[
\gamma_k(s) = \prod_{j=1}^{n_s} \phi_{kj}(s_j) = \exp \left[\sum_{j=1}^{n_s} \frac{(s_j - m_{kj})^2}{\sigma_{kj}^2} \right]
\]

for \(k=1,2,\ldots,n_s \) where \(\gamma_k \) is associated with the \(k \)th receptive-field. The multi-dimensional receptive-field function can be expressed in vector notation as

\[
\Gamma = [\gamma_1, \gamma_2, \ldots, \gamma_{n_s}]'
\]

4) Weight memory space \(W \): Each location of \(R \) to a particular adjustable value in the weight memory space with \(n_w \) components can be expressed as

\[
W = [w_{1w}, \ldots, w_{qw}, \ldots, w_{nw}] = \begin{bmatrix} w_{1w_1} & \cdots & w_{1w_n} \\ \cdots & \cdots & \cdots \\ w_{qw_1} & \cdots & w_{qw_n} \\ \cdots & \cdots & \cdots \\ w_{nw_1} & \cdots & w_{nw_n} \end{bmatrix} \in \mathbb{R}^{n_w \times n_s}
\]

where \(w_q = [w_{qw_1}, \ldots, w_{qw_2}, \ldots, w_{qw_n}] \in \mathbb{R}^{n_w} \), and \(w_{qk} \) denotes the connecting weight value of the \(q \)th output associated with the \(k \)th receptive-field.

5) Output space \(\hat{f} \): The output of CMAC is expressed as

\[
\hat{f}_q = w_q \Gamma = \sum_{k=1}^{n_s} w_{qk} \gamma_k, \quad \text{for } q=1,2,\ldots,m
\]

It can be expressed in a vector notation as

\[
\hat{f}(x,W) = [{\hat{f}_1}, \ldots, {\hat{f}_n}]' = W'\Gamma
\]
B. Fault Accommodation Analysis

In this section, a design methodology is illustrated for fault accommodation in a class of nonlinear systems shown in (1). Assumes there exists a bound such that

$$\|\mathbf{y}(x,t) + \mathbf{J}(x,t)\|_p \leq \tau$$ \hspace{1cm} (11)

where \(\mathbf{J}(x,t) = \dot{f}(x,t) - \dot{\hat{f}}(x,\mathbf{W}^*) \) is the approximation error for a failure function, \(\mathbf{W}^* \) is an unknown constant matrix that represents the optimal network weight of \(\mathbf{W}^* \), and \(\tau \) is a constant representing a uncertainty bound. Since the bound \(\tau^* \) is general unknown, an estimation of this bound denoted by \(\hat{\tau} \) will be derived. Assume a Lyapunov function \(V_\nu(x) \) satisfies the following:

$$\alpha_1\|x\| \leq V_\nu(x) \leq \alpha_2\|x\|$$ \hspace{1cm} (12)

$$\frac{\partial V_\nu}{\partial x}[\mathbf{F}(x) + \mathbf{G}(x)u + \eta(x) + f(x)] \leq -\alpha\|x\|$$ \hspace{1cm} (13)

where \(\alpha, \alpha_1, \alpha_2 \) are the positive constants. Consider the following Lyapunov function candidate:

$$\dot{V}_\nu(x,\mathbf{W},\hat{\tau}) = V_\nu(x) + \frac{1}{2\xi_1}t\dot{\hat{\tau}}(\mathbf{W}^T\hat{\mathbf{W}}) + \frac{1}{2\xi_2}\hat{\tau}\hat{\tau}$$ \hspace{1cm} (14)

Define the \(m \)-dimensional vector

$$\mathbf{y}(x) = \frac{\partial V_\nu}{\partial x}G(x)$$ \hspace{1cm} (16)

Using (4), (13) and (16), equation (15) can be rewritten as

$$\dot{V} = \frac{\partial V_\nu}{\partial x}G(x) \leq \frac{1}{\xi_1}t\dot{\hat{\tau}}(\mathbf{W}^T\hat{\mathbf{W}}) + \frac{1}{\xi_2}\hat{\tau}\hat{\tau} + \frac{1}{\xi_2}\hat{\tau}\hat{\tau}$$ \hspace{1cm} (15)

Define the \(m \)-dimensional vector

$$\mathbf{y}(x) = \frac{\partial V_\nu}{\partial x}G(x)$$ \hspace{1cm} (16)

Using (4), (13) and (16), equation (15) can be rewritten as

$$\dot{V} = \frac{\partial V_\nu}{\partial x}G(x) \leq \frac{1}{\xi_1}t\dot{\hat{\tau}}(\mathbf{W}^T\hat{\mathbf{W}}) + \frac{1}{\xi_2}\hat{\tau}\hat{\tau} + \frac{1}{\xi_2}\hat{\tau}\hat{\tau}$$ \hspace{1cm} (17)

where \(\dot{f}(x,\mathbf{W}) = \mathbf{W}^\top \Gamma = (\mathbf{W} - \hat{\mathbf{W}})^\top \Gamma \) and \(\mathbf{y}(x) = \mathbf{y}(x) \). Noting in (17) that

$$t_\nu(\mathbf{W}^T\dot{\mathbf{W}}) = \sum_{i=1}^n \tilde{w}_i^T \tilde{w}_i$$ \hspace{1cm} (18)

$$\dot{\mathbf{y}} = \sum_{i=1}^n \tilde{w}_i^T \mathbf{y} + b_i$$ \hspace{1cm} (19)

where \(\tilde{w}_i \) and \(\tilde{w}_i^T \) are the \(k \)-th columns of matrices \(\mathbf{W} \) and \(\dot{\mathbf{W}} \), respectively. Then, (17) becomes

$$\dot{V} \leq -\alpha\|x\| + \phi(x)[u + \eta(x) + f(x) + \dot{\hat{\mathbf{W}}}]$$

$$+ \sum_{i=1}^n \frac{1}{\xi_2}\tilde{w}_i^T \dot{\hat{\tau}} - \hat{\mathbf{W}} \dot{\mathbf{W}} \phi + \frac{1}{\xi_2}\|\hat{\tau}\|$$

(20)

The corrective controller is chosen as

$$u = -\mathbf{W}^\top \Gamma - \hat{\tau}\mathbf{sgn}[\phi(x)]$$ \hspace{1cm} (21)

in which

$$\hat{w}_i = \xi^i b_i \phi(x)$$ \hspace{1cm} (22)

$$\hat{\tau} = \xi^i \phi(x) \mathbf{sgn}[\phi(x)]$$ \hspace{1cm} (23)

where \(\mathbf{sgn}[\phi(x)] = \mathbf{sgn}[\phi(x), \ldots, \phi(x), \ldots, \phi(x)]^T \) and \(\mathbf{sgn} \) denotes the sign function.

By substituting (21), (22) and (23) into (20), yields

$$\dot{V} \leq -\alpha\|x\| + \phi(x)[\|x\| + \phi(x)[\eta(x) + \dot{\hat{\mathbf{W}}}]$$

$$+ \sum_{i=1}^n \frac{1}{\xi_2}\tilde{w}_i^T \dot{\hat{\tau}} - \hat{\mathbf{W}} \dot{\mathbf{W}} \phi + \frac{1}{\xi_2}\|\hat{\tau}\|$$(24)

$$\leq 0$$

where \(\phi \) is the \(i \)-th element of \(\mathbf{J} \).

IV. Simulation Result

Consider the simulations of a three-tank compression system. The input spaces for these examples are set between \([-2.7, 2.7]\). The receptive-field basis functions are chosen as \(\phi(s) = \exp(-|s_i - m_j|^2 / \sigma_j^2) \) for \(j = 1, 2 \) and \(k = 1, 2 \). Here, the parameters are chosen as \(\sigma_2 = 2.4 \)

\[m_{11}, m_{12}, m_{13}, m_{14}, m_{21}, m_{22}, m_{23}, m_{24}, m_{31}, m_{32}, m_{33}, m_{34}, m_{41}, m_{42}, m_{43}, m_{44}\]
as zero. The parameters of CMAC are set as $n_E = 9$ and $\rho = 4$. Considering a three-tank system as shown in Fig. 2, its dynamic function is given as [1]

$$\dot{x}_i = \left(-c_i S_p \text{sgn}(x_i - x_i) \sqrt{2g|x_i - x|} + u_i \right) + \eta_i(x, u) \quad (25)$$

$$\dot{x}_2 = \left(-c_i S_p \text{sgn}(x_2 - x_2) \sqrt{2g|x_2 - x_2|} - c_i S_p \sqrt{2g|x_2|} + u_2 \right)$$

$$-q_{20} + \eta_2(x, u) \quad (26)$$

$$\dot{x}_3 = \left(-c_i S_p \text{sgn}(x_3 - x_3) \sqrt{2g|x_3 - x_3|} - c_i S_p \sqrt{2g|x_3|} + u_3 \right)$$

$$+ \eta_3(x, u) \quad (27)$$

where $x = [x_1, x_2, x_3]^T$, $u = [u_1, u_2]^T$, g is the gravity acceleration, η_i for $i = 1, 2, 3$ represent the modeling uncertainty due to the inaccuracy on the cross section of connection pipes. $q_{20} = c_i S_p \sqrt{2g}x_2$ is the outflow rate from the tank 2. The cross section $A = 0.0154m^2$ and the cross section of the connection pipes is $S_p = 5 \times 10^{-4} m^2$. The $c_1 = 1$, $c_2 = 0.8$ and $c_3 = 1$ denote the nondimensional outflow coefficients. The discrete time model is derived by using the forward Euler approximation

$$\dot{x}_i \approx (x_i(k+1) - x_i(k))/\Delta t, \quad \text{for } i = 1, 2, 3 \quad (28)$$

where f_i denotes the fault function and β_i is the time profiles of fault. The nominal controller is given as [12]

$$u_{nc} = \left[x_i(k+1) - x_i(k) + x_i(k)/\Delta t + ax_i(k+1)/(a+1/\Delta t) - F_i(\cdot) \right] g$$

, for $i = 1, 2$ \quad (29)

where $a = 10$. Initial condition is set to be the liquid levels $x_1(0) = x_2(0) = x_3(0) = 0.15m$, and the control objective is to keep all the liquid levels at 0.2m (i.e. $x_{ad}(k) = x_{sd}(k) = x_{sd}(k) = 0.2m$).

For simulation purpose, the modeling uncertainty bounds are set as $|\eta_i(x,t)| \leq \bar{\eta}_i$, where $\bar{\eta}_1 = 3.5 \times 10^{-3}$, $\bar{\eta}_2 = 2.5 \times 10^{-3}$ and $\bar{\eta}_3 = 6.5 \times 10^{-3}$. Three simulation cases are illustrated:

Case 1: The x_1, x_2 and x_3 are in the regular condition with $f_1(k) = 0$ and $f_2(k) = 0$ and use the control input $u_i = 0$, for $i = 1, 2$. The simulation results are shown in Fig. 3.

Case 2: The x_1, x_2 and x_3 are in the regular condition with $f_1(k) = 0$ and $f_2(k) = 0$ and use the control input $u_i = u_{in}$, for $i = 1, 2$. The simulation results are shown in Fig. 4.

Case 3: Considering an abrupt leakage in tank 1 and an incipient leakage in tank 2, whose failure dynamics are [1]

$$f_1(k) = -c_i \gamma_1 \sqrt{2g}x_1(k)$$

$$f_2(k) = -c_i \gamma_2 \sqrt{2g}x_2(k)$$

$$\beta_1(k-T_1) = U(k-T_1), \quad T_1 = 270$$

$$\beta_2(k-T_2) = (1-e^{-\alpha(k-T_2)})/U(k-T_2)$$

$$\alpha = 0.063; T_2 = 426$$

where $\gamma_1 = 7.3 \times 10^{-2}$ and $\gamma_2 = 8.4 \times 10^{-2}$. Using the control inputs $u_i = u_{in} + u_{ic}$, for $i = 1, 2$, the simulation results are shown in Fig. 5.

The simulation figures show the trajectories of x_1, x_2, x_3, and the control inputs u_1 and u_2. As illustrated in Fig. 5, the fault accommodation scheme is effective in correcting the effect of the unknown fault by attaching the corrective controller to the nominal controller.

V. CONCLUSIONS

A fault accommodation method using the cerebellar model articulation controller is proposed. The fault accommodation scheme is derived based on Lyapunov function, so that the accommodation control system is guaranteed to be stable even in the presence of faults. The proposed fault accommodation control system is applied to a tank control system. Simulation results show that the proposed design method can effectively achieve the fault accommodation.

ACKNOWLEDGEMENT

This work was supported partially by the National Science Council of the Republic of China under Grant NSC 94-2213-E-155-010.
REFERENCES

Fig. 4. Tank system without fault, $u_i = u_{in}$.

Fig. 5. Tank system with fault occurring at $T_0 = 270$, $T_1 = 426$, $u_i = u_{in} + u_{i1}$,

$(x1 \longrightarrow, x2 \longrightarrow, x3 \longrightarrow, u1 \longrightarrow, u2 \longrightarrow)$